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NOMENCLATURE

bulk sound speed of gas

cross sectional area of the bullet
cross-sectional area of duct

constant pressure specific heat of the gas
constant volume specific heat of the gas

barrel diameter

chamber diameter _

internal energy of gas per unit mass of gas

internal energy of combustion products per unit mass of gas
inter.al energy of particle per unit mass of particle

internal energy of gas per unit mass of gas leaving
through the wall

internal energy of particle unit mass of particle
leaving through the wall

force per unit volume of mixture resulting from gas
acting on particle (positive when acting in positive
x direction)

bore resistance force

vall friction force on gas per unit volume of
mixture (positive when acting {n positive x
direction)

wall friction force on particle per unit volume of
mixture (positive when acting in positive x
direction)

enthalpy of gas

particle's velocity ratio across area discontinuity
amount of heat released per unit volm. of
propellant burnt

bullet length

barrel length (measured from where barrel diameter
begins to muzzle)

length of cylindrical portion of particle

mass of the bullet

mass of a single particle

aumber of particles per unit volume of aixture
aumber of particles per unit mass of gas
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pressure of gas (also equal to pressure of mixture)
pressure immediately after the bullet

pressure immediately behind the bullet

pressure behind the bullet immediately before it
leaves the barrel

nondimensionalizing pressure

pressure behind shock when it leaves the barrel
hold back pressure

muzzle pressure (usually atmospheric pressure)
pressure of the gas leaving through wall'perforacidns

time rate of heat addition to gas per unit mass
of gas from internal sources

time rate of heat addition to particles per unit
mass of particle from internal sources

time rate of heat addition to gas per unit mass of
gas from duct wall

time rate of heat addition to particles per un:l.t
nass of particle from duct wall :

rate at wvhich total energy is addod to the gas per umnit
volume of mixture due to burning

rate at which total energy is added to the particle phase
per unit volume of mixture due to burning

toul heat released by a propclhnt particle
from ignition to time t.

rate at which total energy is added to the gas phase per
unit volume of mixture due to mass transfer throwgh wall perforations

rate at which total energy is added to the particle phase per
unit volume of mixture due to mass transfer through wall perforations

particle radius
entropy of gas
burning surface

time

time. that it takes for pppx to reach py after bullet leaves
the barrel :

time that bullet leaves the barrel

time that it takes for pgyyrto reach py after lhock leaves
the barrel

temperature of gas
vall temperaturs
velocity of gas
velocity of particle
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velocity of gas leaving through the wall in the x direction
velocity of particle leaving _through the wall in the x direction
shock velocity '

velocity of gas leaving through the wall in the radial
direction

velocity of particle leaving through the wall in the radial
direction ’

volume of a propellant particle burnt from ignition to time t

volume of a propellant particle remaining at time t

position coordinate along axis of duct (positive from
breech to muzzle) )

X location vhere barrel diameter begins
x location of bullet

X location vhere chamber diameter ends
nondisensionalizing length

x location of muzzle

regression distance

conltant. in regression formula

constant in regression formula
ratio of specific heat cP/cv

volume fraction of particle

dynamic viscosity

density of gas = mass of gas per unit volume of gas

nondimensionalizing density

density of particles = mass of particles per unit
volume of particles
density 6f gas leaving through the wall

‘gas concentration (mass of gas per unit volume of mixture)

particle concentration (mass of particles per unit volume
of mixture) .

the rate at vhich work is done on the gas per unit mass
of gas from all forces

xi
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I. INTRODUCTION

This document is a final contract report for contract DAADOS-
74-C-0749. The research under this contract is aimed toward the
development of a computer code which utilizes the method of charac-
teristics to solve the problem of two-phase flow with shocks. This
type of flow is typical of flow in a projectile launch tube, where
combustion products and unburnt propellant grains are mixed.
Usually, this complicated flow, which may contain shocks of relatively
large amplitude, is approximated either by a pure gas flow or by a
simplified two-phase flow model where the gas and particles have the
same or predetermined relative velocities. A better model to handle
this problem is required to test the accuracy of simplified formu-
lations and to produce a more accurate prediction of the flow,
particularly in the presence of shocks.

In addition to presenting the general formulation, a dis-
cussion of the proper initial-boundary values to be prescribed for
the present mixed hyperbolic-parabolic equations is presented. It
is shown that there is a region immediately behind the bullet in
which only the gas phase is present. This consideration requires
the development of an interface between a one-phase and two-phase
region. The computer code iIWOFLO which utilizes the method of charac-
teristices and finite difference techniques to solve the problem of a
projectile accelerating in a gun barrel is presented.




1. State of the Art

Quite a few textbooks and manuals, such as, Corner [l], Hunt (2]
and the Army Design Handbook [3] exist in the field of internal
ballistice; however, most of these works give only qualitative de-
scriptions, or present simple experimental results. They are not
sufficient for modern design application; more uo-to-date computer
codes are needed to better model the internal ballistics problem.

In recent years, computer codes have been developed to treat
the internal ballistics problem. Examples of which are codes written
by Baer and Frankle [4] and Baer [5]. These codes for the most part
are limited in that they are restricted to one-phase flows where the
particle motion is predetermined. This is satisfactory when the
particles are very small, and the loading ratio is low, thus the
particles and the gas are in equilibrium. However, for problems where
finite size propellant particles are packed with a high loading ratio,
the motion of the particles is different from that of the gas and the
flow should be treated as two distinct phases. In 1956, under BRL
sponsorship, a group at the University of Maryland discussed the
equations of two-phase flow and proposed schemes for numerical calcu~-
lation; however no attempt was made tu write a code [6]. Other works
such as Refs. [7]) and [8] are only for special applications, with
various limitations and simplifications.

There is a need for an up-to-date two-phase flow code that will
trace shock waves exactly, handle high loading ratios, include the
effects of finite particle volume, accommodate a general form of the
equation of state and various other features. With today's high speed
computers and the knowledge of numerical methods, it is feasible to
develop such a code.

To solve this problem numerically either a two-dimensional or a
one-dimensional code may be developed. As discussed by Moretti [9]
two-dimensional codes are certainly more versatile; however, for
certain problems, the results of two-dimensional codes are often less
than satisfactory, with uncertainties in convergence, stability and
physical meaning. On the other hand, one~dimensional codes can be
used more convenlently for studying the importance of different para-

meters and for delineating the physical nature of the problem. In view
of the present state-of-the-art in two-phase flow, a one dimensional code
would be most useful to sclve interior ballistic problems.

In this report, we present a one-dimensional two-phase flow
code, in which a shock wave is traced exactly both in front of and
behind the projectile. In continuous regions, we shall use the basic
method of characteristics supplemented by finite-difference techaniques
in places vwhere caaracteristics do not exist. The method of character-
istics has the advantage that it reveals more directly the flow prop-
erties and wave structure.




2. General Features ot the Code

The following are some ot the features that are included in the

final code.

a. The computer code is writcten in such a way that any consistent
set of units can be used.

b. the code i written in FORTRAN IV language.

c. Pruvisions nave oeen made to account for heat loss through the
larrel, wall friction, and mass loss through holes in the
barrel.

d. The code is designed to handle gradual changes in bore area.

e. The code does not handle ignition; therefore, all propellant
particles will be assumed to be ignited before calculations
begin. An ignition code must be used to generate the initial
conditions P(X,O). €(x,0), p(x,0), DP(X.O), z(x,0), u(x,0)

and u_(x,0) which will be substituted into the present code.
A shotk wave miy be present initially.

f£. The bore resistance is treated as a function of x, u and A4p.

g. The gas in front of the bullet is treated including the
possible formation of a shock.

h. A single shock wave can automatir.ally be inserted and traced
behind the projectile.

i. The barrel configuration is of the form shown in Fig. (1).

Breech Variable Boze Projectile Muzzle

7 /A /I VY
27777

'

Figure 1 - Schematic Barrel Configuration




I1. GENERAL FORMULATION

1. Literature Review

The problem of two-phase flow has drawn considerable attention in
recent years. This interest is stimulated mostly by applications
such as solid propellant rockets, nuclear reactors, fuel sprays,
lunar ash flow and, of course, interior ballistics. The governing
equations of two-phase flow have been presented by many authors. A
few of these will be discussed here.

Rudinger [10, Section 4] derived a set of equations for solid parti-
cles suspended in a gas where the particle volume fraction is finite.
A simpler set of equations neglecting the particle volume was also
presented [10, Section 7). This simple set of equations was solved
numerically for an unsteady flow problem [11]. Rudinger gave detailed
physical meaning to various terms in his equations and discussed the
shock conditions and relaxation times. His formulation is not suitable

for direct application to the present problem, because (a) it 1is limited

to an ideal gas equation of state, (b) no mass transfer betveen the
particle and the gas is considered, (c) no transport of mass, momentum,
and energy between the mixture and the duct wall is allowed, (d) no
provision is made for a change of duct area along the axis, and (e)

the pressure gradient force on the particle is neglected.

Migdal and Agosta [12] derived two-phase flow equations by consider-
ing the particle terms as a source of drag and heat transfer in a
pure gas flow. They included the effects of mass, momentum and energy
transport between the particles and the gas, without giving explicit
expressions for them and limited their study to the case of small
particle volume. Using concepts in continuum mechanics, such as par-
tial stress and partial energy, Soo [13] derived equations for multi-
phase flow. He emphasized the importance of the size distribution of
the solid particles, and wrote a set of fundamental equations treat-
ing solid particles of different sizes as distinct species in the
mixture. This approach is not directly suitable for practical appli-
cation because in general the size distribution of the solid particles
is more or less continuous. Panton [14] treated the two-phase flow
problem by defining all physical quantities in terms of their time
and spacial averages. This approach may be suitable for a turbulent
flow study, but is too cumbersome for other purposes. Murray [15] de-
rived a set of equations to be used primarily for fluidization appli-~
cations. He assumed a constant particle volume ratio and neglected
pressure forces acting on the particles. In each of his equations of
motion terms involving the time derivative of both the fluid and
particle velocities are included. As will be shown later, these terms
will change the nature of the governing equations. Marble [16] also
applied modern techniques of fluid mechanics to the two-phase flow
problem of a gas and solid particles, however, he limited his study
to the case of a negligibly small particle volume fractiom.

i e



Most studies of a two-phase flow are limited to the case of a
negligibly small particle volume fraction. As mentioned before,
Rudinger [10] included the volume fraction terms, but did not consider
the pressure gradient force acting on the particle. Pai [17] included
the particle volume fraction term and also the pressure gradient force.
, He treated this pressure force by considering the particles as a pseudo-

fluid with a partial pressure. This pseudo-fluid, however, does not
contribute to the pressure of the mixture. In doing this, the term
containing the spacial derivative of the particle volume fraction, 35.,

was not included. For problems where € is not negligible the de-
rivative may be of the same order as other terms in the equations and
its omission may cause appreciable error.

In this report, we derive the governing equations including the
pressure gradient force on the particles, and also the 3¢ term. It will

)
be shown that the inclusion of this term causes the chargcteristic prop-
erties of the equations to change. When this term is neglected, two
compatibility equations exist along the triple degenerate characteristic,

%% = Up, while when it is included, only one exists (for further details
see Sec. III,1)

2. Basic Assumptions

The governing equations are derived on the basis of the fcllowing

assumptions:
a. The equation of state of the gas is of the form p=p (p,E) or
p=p (p,T).

b, The average size of the actual particles will be used in the
equations; they are incompressible; their specific heat is
constant, and the temperature is uniform within each particle.

c. The particles are uniformly distributed over the cross-section
of the duct, and their size and average spacing are small com-
pared with the cross-sectional area.

d. The flow is treated as one-dimensional, thus changes in the
cross-sectional area of the duct must be sufficiently gradual.
Abrupt changes in the cross-sectional area must be treated by
matching the continuous flow regions on both sides.

e. The drag force between the gas and particle phases is assumed known.
It may be prescribed as a function of any of the flow variables.
The modified Stokes formula and Ingebo formula, which were used
by Pai and Rudinger, are typicaldrag force expressions.

f. The effect of the particles on the gas flow is distributed over
the entire gas phase by mixing. This mixing involves only a .
small gas volume and is therefore assumed to take place
instantaneously.

R PRI PR S A e
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The size of the particles to be considered will be a few orders
of magnitude larger than the molecules of the gas. It will be
assumed, therefore, that the particles do not contribute to the
pressure of the mixture. The pressure of the gas-particle
mixture is given by the pressure in the gas phase alone. The
volume fraction of the particles, ¢, will not be assumed small.
Therefore, the pressure gradient will act on the particles, as
well as on the gas, and will be included in the momentum equa-
tions of the particles.

Gravitation and other body forces will not be included in the
equations.

The density ratio between the particles and the gas is amall
enough so that terms containing p/p_ may be dropped from the
equations. P

The particle density pp is constant.

3. Governing Equations
Under these assumptions, the governing equations for the

gas medium are (for a detailed derivation see Appendix A) the continuity
equation,

Do Ju ou dA
E+°§--Adx+w " 1)
the momentum equation,
ﬂ .Q:_C)..a.z--l - - - + — 2
iRl o o[(F F,) m(up u) ww(uw u)] (2)

and the energy equation

DE ,p3du_pu3de 1 -F ) - - -1.2
+ = [Q4Q + u(F-F.) Fup w(uup u” + E)

Dt p 3¥x ¢ 9x 2
-12 -y 2 _ pull-e) 3A 3
+ o (uu -5 u" +E) Uy o Y T ] (3)
The governing equations for the particles are the continuity equation
P
D¥o du o.u
+0 --PR4AA_ ., (4)
Dt p 9x A dx wp

the momentum equation,

and the energy equation, which is uncoupled from the system,

Dpu 1 ¢
il ;;- y ey ((F-F,) - w(up-u) + ww(“w-u)]
+ (F + F;p) - mwp(uwp-up)} (5)

pPE Ju pPu
— P4 P _P,_ P _1
Dt i pp ix * o_ 3x ap [Qp 4 va

j

P
2
u €Ep u
= ik 3
tu B+ (B T lh) - — 5] (6)
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where D/Dt and DP/Dt are material derivatives of the gas and
particle properties, respectively, and are given by

D _ 3 2

Dt ~ at & Y ax
and

) LA

9
Dt - 3t T Yp x
Equations (1)-( 6) represent a system of 6 equations in terms of
8 unknowns o, u, E, p, 6., u, E and €. To complete this system

PP P
we must supply the equation of state of the gas
Pp=7p (0E) (7)

and the definitions of o and op

o= (l-€)p (8)
and
- ¢ )
o Py (9
With the assumption that pp is constant (the particle is incom-
pressible), Eqs. (1)-(9) represent a system of 9 equations in
terms of 9 unknowns o, u, E, o, p, €, 9., Ups and « The terms

Wy W s wwp’ F, Fw’ pr, Q, Qp, Qw’ and appearing on the right

hand side of Eqs. (1) to (9) will be considered as given input infor-
mation; they may be either functions of x and t, or functions of the
flow properties. Usually, they do not contain derivatives of the flow
properties with respect to x or t; therefore they will not affect the
characteristic directions and the form of compatibility equations
associated with the system.




4. Initial and Boundary Conditions

When attempting to determine a set of properly posed initial and
boundary conditions for a set of equations, it is beneficial to have
a thorough understanding of their characteristic directions and com-
patibility equations, since the two are closely related. The details
concerning the characteristics associated with Eqs. (1)-( 5) can be
found in Sec.(II1I,l); however, & few pertinent observations will be
presented here.

First, the particle phase equations, Eqs. (4 ) and ( 5), are weakly
coupled to the gas phase equations, Eqs. (1), (2) and (3) (note that
the converse is not true), thus the characteristic directions associated
with each phase can be calculated separately. Second, the compatibility
equations associated with Eqs. ( 4) and (5) can be calculated inde-
pendent of Eqs. (1), (2) and (3), however, again, the converse is not
true. The full set of equations, Eqs. (1)-(5) must be used to calcu-
late the compatibility equations for the gas phase,

With this information and the understanding that boundary con~
ditions are strongly dependent on the characteristic equations, we shall
make the assumption, that in determining the proper boundary conditions
for our problem, we may treat the three gas equations and the two
particle equations separately. The gas equations are the: treated as
completely hyperbolic, and possess the same boundary conditions as
one-phase compressible flow. The one phase equations incorporating an
ideal gas assumption will now be presented briefly. They are

3P K1} du _
3t T TP "0

du, 3w, 13p,
at s X i p 3X 0

2 2
at oy i X ‘py ) =0

where

The characteristic directions and their corresponding compatibility
equations for this system are then

along %% = u, d( g% )=0 ¥
along %% = y+ec, du + i%dp =0
and along %% =y-~-c, du - ;%dp =0

For hyperbolic systems a properly posed set of initial and boundary
conditions is relatively easy to determine. Courant and Friedrichs (18]
discussed this problem in detail while introducing the concept of
"space-like' and "time-like" curves. Essentially, they simply state i

8
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that for each characteristic reaching a point on a boundary from outside

the domain, one dependent variable must be specified. As an example, let

us take a typical boundary where the boundary coincides with a particle

path, dx/dt = u. If this is a right boundary, the characteristic dx/dt = u-c
falls outside the region of interest, while if it is a left boundary the
characteristic dx/dt = utc falls outside. In either case one dependent
variable must be specified on each boundary.

In determiaing the proper initial conditions, we treat the initial time
line as a boundary defined by t=0. For this case all three characteristics
fall outside the uomain and thus all three dependent variables, p, p and u
must be specified.

For the problem presented in this report, we specify three gas proper-
ties on the initial time line and one gas property on each boundary as can
be seen in the summary at the end of this section.

The determination of proper boundary conditions for the particle
equations can not easily be placed on a rigorous foundation sirce they are
parabolic in nature. It is felt, therefore, that insight intc this problem
could be gained by studying a few classical parabolic systems where proper
boundary conditions have been established. Based on observation of these
cases, we shall propose a hypothesis on boundary conditions, and apply it
to our parapolic particle equationms.

Boundary Condition Hypothesis

For two first order partial differential equations in terms of two
dependent variables u and v, and two independent variables £ and n,

1. If dn = 0 is a degenerate characteristic, then there can be only one
boundary at n = constant, along which either u or v may be prescribed.
No boundary conditions need be prescribed on any other n = constant line.

2, I1f one of the independent variables is time t, then only one boundary
with t = constant can.exist, and further,

a. If t = constant is a degenerated characteristic, either
u or v may be specified;

b. If t = constant is not a characteristic, both u and v
must be specified, which is a typical Cauchy initial
value problem.

Consider the system of equations

v u
3 aan+

(10)
du

(13




.

which is equivalent to one second order equation

2

3 u Ju
e i i
14

where the omitted terms do not contain any derivatives. For our present
purpoise, we shall use the first order system, instead of the single second
order equation. It can be shown that for (10), dn = 0 is a characteristic
line. According to our hypothesis, the boundary of the domain must be
"open" in the positive n direction. Boundary condition can be specified
along only one n = constant line ([19], p. 692). If £ is not the time
coordinate, then two boundaries exist along two £ = constant lines

A typical problem of this nature is the heat transfer problem governed
by the equation

dr_ 201
3x2 at

or the equivalent first order system

(9]
N

a6 2 T
9x at

where T is temperature and a is a constant. The characteristic direction
associated with this equation is

dt = 0.

A properly posed set of initial and boundary conditions for this problem,
as shown in Fig. 2, 1is

t=0 specify T
x=0 specify T
x=L specify T

where L 18 the thickness of the plate.

t = constant, a characteristic

T Specified on All Three Boundaries
Figure 2 Boundary Conditions for the Heat Transfer Problem
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Another example is the boundary layer equations. If only the terms
relevent to our present discussion are included, the governing equation
may be written as

y

3G

--]; U?‘l'l"" ese
oy \Y X
Ju
y g

where x is in the direction of flow and lies in the plane of the plate, y
is normal to the plane of the plate, u is the velocity in the x direction
and v is the kinematic viscosity. The characteristic direction for this
system is

dx =0
A properly posed set of boundary conditions for this problem as
shown in Fig, 3 is

y =0 specify u
y = gpecify u
X = X specify u (xo.y)

u = free stream velocity

Characteristic direction

L A N,

X

u-= u(y)f

L 4

| T Y

Plate us= 0

Figure 3 Boundary Conditions for Boundary Layer Flow

In both of these examples, £ is not the time coordinate. In our
particle phase case, the equations may be represented by

11




pPo du

Dt .-op —Bax +-ooooo
pPy

4- 8B 00 OCOIOEPINPIOIEOEDNIE
Dt

where the independent variable equivalent of £ of Eq. (10) is time.
Therefore, only one £ = constant boundary exists, as shown in Fig. 4.

tI Boundary does not exist
(2nd t = constant line)

Characteristic ij] (x = constant is a

i characteristic)
I
|

E’(Boundary does not exist

o nd specified
pa uppc e

(t = constant is not a characteristic)

Figure 4 Boundary Conditions for the Particle Phase of Our Flow

In the actual problem, the right hand side of the domain is bounded by
a gas-particle interface, see Fig. 5. No boundary conditions need be
specified on this boundary for the particles, the solution of the gas equations
and the particle equations will yield the location of this interface line.

& characteristic
g curve dx/dt = u
Two phase region j B
gy BAS
re
characteristic
curve Bullet
dx | ::u\ characteristic
dt dx
i’.&.u.o &u curve o= = u = up
dt P
0 N
> X
0 X80

Figure 5 Physical Plane Description of Two Phase Flow Behind a Projectile
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In summary, the boundary conditions for our problem are Breech (x=0)
u(0,t) = 0

up(O,t) -0
Left Bullet surface (x = xB) and (x < xM)

a3

b JrT

duB --}_

& "W (Fr-(Ppgp=Papr)Ap]
u(xB,t) = uy

Right Bullet surface (x = xg + LB)

ulxy + Lgst) = ulxg,t)

Muzzle - after bullet has left (x = xM)

Plxyt) = Py + (PyPppy) (t-tyy)/typ

when [u(xM,t) < c(xM.t)]

or

u(xM.t) - c(xM.t)

Muzzle - before bullet has left (x = xM)

P(xyt) = Py  Vhen [ulxy,t) < clxy,t)]

or

u(*ﬂtt) - C(pr t)

13
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Muzzle - after shock has left (x=x)

POt = Peyrr * Py Prxry) (5=tpxrr)/tsp

when [u(xn.t) < e(xyt)]

or

\l(!“. t) = C(xnl t)

Initial time line (t=0)

u(x,0) = fl(x)

p(x,0)
p(x,0)
c(z,0)
up(x,0)
Pp (x,0)

f2(x)
£4(x)
£,(x)
fs (x)
constant

14
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5. Shock Waves

The treatment of shock waves presented here is based on the
hypothesis that when a shock wave passes through a particle-laden gas,
the changes occur at such a rapid rate that immediately behind the
wave the particles have not had sufficient time to react. The shock
wave produces a rapid deceleration of the gas accompanied by a nearly
discontinuous rise in pressure. Therefore, as presented by Kriebel ([21]
and Rudinger [10], the initial disturbance caused by the shock wave
is not influenced by the presence of particles in the gas. All
properties behind the shock can be calculated from the shock conditions
if the gas properties in front of the wave are known along with the
shock speed or one gas property behind the wave. This state immed-
iateiy behind the wave is known as the "frozen" state.

The equations used to calculate the gas properties in the frozen
state are the standard Rankine-Hugoniot shock relations

py (U-up) = o, (U-u,) (11)
P)mPy = Py (U°“1) (uz-ul) (12)

1 1 1
E,-E, = 5'(P2'P1)( 3; = 3; ) (13)

where subscripts 1 and 2 represent properties in front of and behind
the shock, respectively, and U is the shock speed. As previously
mentioned, the properties of the particles are identical in front of
and behind the wave,

6. Equation of State

In formulating the governing equations, it was only natural to
assume that the equation of state was a function of the specific
internal energy, E, and the density, p or

p = p(p,E) (14)

However, in the practical application of flow in a gun barrel, the
equation of state will wore than likely be given in the form

p=p' (0,T) (15)

therefore, provision must be made to incorporate this form into our
formulation. In this section we will treat the subject in detail
and present specific examples.

From the mathematical standpoint, if we can arrive at a re-
lation between E, T, and p of the form

f(EpT’p) =0 (16)
then Eqs. (15) and (16) will combine to be equivalent to Eq. (14).

15
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The procedure used to generate Eq. (16) involves the solution of
several partial differential equations Irom classical thermodynamics
(22]. In order to solve these equations two conditions must be speci-
fied. First, C,(pg,T) must be given, which for this problem it is

assumed to be of the form

Cv(oo. T) =

A1+A2T

Secondly, the constant E(py,Tp) must be given. Knowing these two
conditions, we can proceed to determine Eq. (16).

We begin by calculating the constant volume specific heat of

the gas by solving the equation

oC
v

— . - == T

ap

1, %
212

Then, we calculate E(p,T) and subsequently Eq. (16) from the relations

oE

- = C

oT

and

3E

9p

and the condition E(po,To).

v

[ Ay M
- 2 (T3 - Pp)

Determining Eq. (16) only conceptually solves the problem of
handling an equation of state in the form of Eq. (15). At this point
we will treat the actual technique for implementing Eqs. (15) and (16)

into the computer code.

When the value of p must be calculated, assuming that p and E
are known, Eq. (16) is solved numerically for T and then T and p are
substituted into Eq. (15) to yield p. When the derivatives 3P and 3P

are r:quired, they are calculated from Eqs. (15) and (16" thrgugh the

following formulas

3 . 3p' 3T(p,E
oE 3T 29E
3 . ap' 3T(p,E " ap'
ap 3T 3p ap
Where the value of %%-and %§ are found from Eq. (16) using the relations
a_T---gil—a-f—
9E oE ' oT

and

ap

3T a3t 3

p oT
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We will now present two equations of state which have been
implemented into the computer code. The first is the "virial equation"
given by

Pp=0 % T [1+p B(T) + 02 c(T)] an

and the second is the van der Waals equation given by

Pp=o0 5 T ( )

) —ap (18)

'T\O
where R/M, n, and o are constants which are material dependent and
B(T) and C(T) are empirically determined functions of temperature.
It should be noted that if a is set equal to zero Eq. (18) is the
Noble-Abel equation of state and if both a and n are set equal to
zero it becomes the ideal gas equation of state.

The values of C, and f(p,E,T) corresponding to Eq. (17) are
given by
2
RT 3
- + - _—

+ 3 (p¥oy) C(D]}

£(0,E,T) = E - E(p»Ty) = A (T-Tj) - (T -Ty £)
2 ~
+ B (o (23R4 1 (o+o)—-;‘-.$r-ul-'0

vhile the values corresponding to Eq. (18) are given by

cv (0,T) = cvo (po,T) = Al + AzT
2 2

£(o,E,T) = E - E(T T,)

1
0°P0) =~ AL (T-Tp) - 5 A4, (T°-
+ a(o-oo) =0

As additional equations of state become available they may easily be
incorporated into the code.

17




7. Area Discontinuity (gas-particle interface)

In order to examine the behavior of a two-phase material as it
passes through an area discontinuity, moving at a velocity up, let us
construct a control volume as shown in Pig. 6.(it should be noted that for
the gas particle interface up = ). It is convenient. to treat section B as
an exit from the "main'" flow field and section A as an entrance back

Section B

(¥

Section A

i

Yp

Figure 6. Area Discontinuity

into the field. Thus section A may be considered as the entrance of
region II, and section B as the exit from region I. These two regions
are coupled by constraints relating their respective properties across s
the control volume, region III. In the limit, we may let region III

shrink to a line located at the area discontinuity. We will now

determine these constraints. First we note in Fig. 7 that four of the i
characteristic lines fall outside the main flow field: namely char- '
acteristics 4B, at section B, and 1A, 2A and 3A at section A. Equations
written along these lines must therefore be replaced. In Sec. (III,l)
it is shown that one compatibility equation is associated with each of
the four above-mentioned characteristic directions; in addition, the
particle continuity equation is written in finite-difference form along
the characteristic 3A (%% = “p)' Thus there are five missing equations

which must be replaced by five new relations coupling the properties
of section A with those of section B.

Let us now determine these new equations. Since the particle
equations are weakly coupled to the gas equations, the characteristic
directions can be associated distinctly with either the gas or the
particle phase. We shall assume that the equations written along 'gas"

characteristics (%% = u + c, u) should be replaced by equations relating

gas properties, and that equations written along the "particle" char-

acteristic (3' = u,) should be replaced by equations relating particle

properties. t Th:gofore we will need three equations governing the
18
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A
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i FAW| 'S | -
| X
Section Section
B A
dax dx |
(1B) it " Yp + cy (1A) it u, + Cy
dx [ ] ‘ g—x- -
(2B) Gt = v (20) g =
dx dx
(3B) de upB (3A) at " upA
dx dx
(4B) qc ™ Yp ~ ©p (4A) Je = YA~ A

Figure 7. Physical plane (x,t) plot of area
discontinuity showing characteristic

network.
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change in gas properties between sections A and B, and two equations
relating particle properties.

First, let us consider the relations for the gas phase. Our
treatment essentially follows that given by Shapiro [23]. 1In his
approach, mass and energy are conserved bewween the two sections;
momentum conservation is not considered, because to do so would re-
quire knowledge of the forces acting between the wall and the
fluid. In place of momentum conservation, Shapiro makes the simpli-
fying assumption that entropy is continuous across the area change.
For our problem, it seems that this assumption is satisfactory. How-
ever, if entropy calculations are prohibitively difficult because of
the complexity of the particular equation of state chosen, then
either the assumption of constant temperature between the sections
or the momentum equation utilizing an approximation for the pressure
on the wall may be used.

Let us now determine the two equations governing the change in
particle properties® One relation which is easily obtained is con-
servation of mass between the sections, namely:

cpA(upA_uD)AA " 0pB(upB - uD)AB
The remaining equation is more difficult to determine. As was the
case for the gas phase, applying the principle of conservation of
momentum would require knowledge of the interaction force between
the wall and the particles; thus rendering its use impractical. The
equation of energy conservation for the particle phase, although it
could be applied, would not complete the system of equations since
it is uncoupled from the system, and thus would merely add one equa-
tion and one new variable Ep. Entropy calculations are impossible.
for the model ignores the thermodynamic aspects of the particle phase.

One possible approach is to assume that the particle velocity
does not vary across the area discontinuity. This supposition is
reasonable when one considers that, although the gas phase velocity
increases instantaneously, the particles, being more massive, do not
accelerate as quickly. (Such an approximation brings to mind the
assumption of frozen flow used to calculate property changes across
shock waves; see section 1I(5).) For area discontinuities, this
approximation seems valid 1f ¢ is small or if the area change is from
small to large; however, inconsistencies (such as €>1) may arise with
flows in which a highly concentrated particle phase travels from a
large area to a smaller one. For this reason, we have chosen to vwrite
the last of the five equations in the form:

where Km is a factor which, most likely, depends on geometry and flow

parameters and must be determined experimentally.

* Note that for the gas-particle interface these equations are not

necessary since particles do not(;xiat at Section B.
2




For the present, we have made the convenient assumption that

CA - EB,

which when combined with the mass conservation equation yields

Km - x;
It is yet to be seen how the factor K affects the overall flow cal~
culations. To summarize, the equatigns which will be used are, for

the gas phase,

Conservation of mass

oA(uA-uD)AA - oB(uB-uD)AB (19)

Conservation of energy

2 2
u u
(H + j{OA (n + '{05 (20)
Continuity of entropy
S, " S (21)
and for the particle phase,
Conservation of mass
- - - 22
°A(upA “D)AA cB(upB uD)AB (22)
Particle velocity assumption
(), = Kylu)y (23)

8. Mass Transfer Between Solid and Gas Phase

Following the procedure used to calculate the rate at which heat is
released while the propellant is burning we define the mass of an
individual particle, Mp, as

M =Vo
P PP
The rate at which the mass of a single particle is changing due to

burning, ﬂp. is then given by

P
p D'V
n--D—.M -p——g
p Dt p p Dt
where
pPv Pz
P 1

Dt 5,(2) Dt
and Sp(z) is the burning surface
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Defining the number of particles per unit volume of mixture, N, gs

10
N.—-P.--c—

V. »p v

PP |

we then can define the rate at which mass is being added to the gas
phase per unit volume of mixture, w, as

-c p_ DPV
w'-ﬁpN-v—n-ﬁl (24)
P

9. Burning Law (Regression Equation)

Before introducing the specific equation specifying the regression
rate, let us first define the regression distance Z(x,t). To do this
ve define a parameter y to be a characteristic dimension of. a propellant
grain in the sense that it is the least dimension which has to be
traveled by the burning surface in order to burn the propellant com~
pPletely. The regression distance is then defined as the amount that y
has decreased from its initial value at a particular x and t. The
regression rate is then simply DPZ/DT. The specific form currently being
used is the non-linear burning law given by

P
%;E = a(m p* (25

10. Heat Released During the Burning of the Propellant

In order to calculate q, the amount of heat released during a given
time interval, we must be able to calculate the volume of the propellant
burnt at any instant, V, (x,t); or equivalently, the instantaneous particle
volume Vp(x, t) tccomizgnz that the two are related we can vwrite

Py, Gse)  DPV, (26)

Dt Dt

If we now define a parameter K. as the amount of heat released per unit
volume of propellant burnt, then thg rate at wvhich an individual particle
is giving off heat is thus given by

n’% _ v, o pPv -
be - Xq Dt Q Dt
Now defining N‘. the number of particles per unit mass of gas as
N = up - ; (28)
8 VP %

e R RS I eSS
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we can calculate, q, the rate at which heat is being added to the gas
phase per unit mass of gas by

ik
q= N, 5 (29)
Equation (29) can be combined with Eqs. (24), (27) and (28) to yield
pPy %
q= - HI KQ e - ﬂp = KQ (30)

11. Calculation of the Initiation and Tracing of a Shock Wave
Behind the Bullet

Here we present techniques used to insert and trace a shock wave

behind the bullet. These proceedures will handle shock reflection
from both the breach and the bullet precisely; however, some order of
approximation will be necessary to treat a shock passing through a

gas-particle interface.

It is proposed to cal-

culate the singularity occurring at this interaction point precisely
and then "smear' the reflected wave to simplify future calculations.
The wave structure of this interaction point is shown in Figs. (8)
and (9). Figure (8) shows the interaction of a right-traveling
shock with the gas-particle interface. The proceedure for calcu-
lating this singularity is:

a.

Calculate the properties in regions a,b and ¢ and assign them to
the mesh points as shown.

Calculate the properties in regions 2,3 and 5 (region 4 notation
is not used due to programming considerations) (a<=>1 and c<=>6)

Assign the properties in regions 2,3,5 and 6 to mesh points as
shown. This has the effect of causing the properties, starting

at point I, to vary gradually until they reach the values of
region 2 just before the gas particle interface. A precise
treatment would cause the properties in region 1 to be gradually
reached at the gas particle interface and then change instan-
taneously to those in region 2, see Fig. (10). (The properties in
region 1 are not retained for future calculation).

It should also be noted that the contact surface is not traced
in subsequent calculations.

Figure (9) shows the interaction of a left traveling shock with the
gas-particle interface. The calculation procedure here is quite
similar to that used for a right traveling wave and is as follows:
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Reflected Shock or Gas-Particle Interface
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Figure 8. A Right Traveling Shock Wave Interacting
With a Gas-Particle Interface.
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Figure 9. A Left Traveling Shock Wave Interacting
With a Gas-Particle Interface.
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for a Right Traveling Shock Intersecting with
a Gas-Particle Interface.
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a. Calculate the properties in regions a,b and ¢ and assign them
to the mesh points as shown.

b. Calculate the properties in regions 2,3 and 5 (region 4 notation
is not used due to programming considerations). (a<® 1 and c o 6)

c. Assign the properties in regions 1,2,3 and 6 to mesh points as
shown. This has the effect of causing the properties, starting
at point II, to vary gradually until they reach the values of
region 3 just after the interface. A precise treatment would
cause the properties in region 6 to be reached just after the
interface and then change instantaneously in two steps to those
in regions 5 and 3, see Fig. (11). (The properties in regions 5
and 6 are not retained for future calculations)

It should be noted that the contact surface is not traced in
subsequent calculations.

The simplifications that we use in treating the shock-interface
singularity and in the subsequent calculations seem to produce errors
which are, for the most part, dependent on the mesh size (the smaller
the mesh, the more accurate the smoothing) and the magnitude of ¢
(the smaller the value of ¢, the smaller the reflected wave). One
will have to judge on an individual-problem basis the magnitude of these
errors.
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III. NUMERICAL PROCEDURE (THE METHOD OF CHAR:CTERISTICS)
1. Calculation of the Characteristic Diiections and

Compatibility Equations

Before calculating the compatibility equations corresponding to
Eqs. (1) to (11) let us eliminate the partial derivatives of p and ¢
from Eqs. (2), (3) and (6) by using Eqs. ( 7), ( 8) and (9 ). We
then arrive at the partial differential equations that are used in

the computer code, namely:

gas continuity

Oy, +u sy + ou, = GC (31)
gas momentum
u,t +u u,x + A c,x + B E’x +D op,x = GM (32)
gas energy
E’t+uE’x+Fu’x+Gop,x-GE (3)
particle continuity
+ ] + 0 = PC 34
et T % %pux T %p Yp,x (=0 3
particle momentum j
up,t + up up,x = PM (35) q
and particle energy &
+ E + H +Jo » PE 36 g
Boot ¥ U Epx tH U Pyx (36)
where &
1 1-¢ |
A= PRI B= 5 P'g H ¥
3
- 1 . - 2 (3 a
D= (o Prof F P ’ J
P
G e _EU__ o H= -L ]
p. O p
P P
Pu
J = ———2
p_ O
P P

GC, GM, GE, PC, PM, and PE are the right hand side of Eqs. (1) to (1),
respectively and the notation x.y represents the partial derivative of

X with respect to y.
28




The characteristic directions and compatibility equations for
this system of equations has been calculated using both the directional
derivative approach and the determinant approach producing identical
results. Only the determinant approach will be presented here.

In applying the determinant approach, we treat the time and spa-
tial derivatives of the dependent variables as unknown quantities.
If we add the six continuity equations

do = o, dx + O dt (37)
du = u, dx+u, dt (38)
dE = E.x dx + E,t dt (39)
dop S dx + ¢ . dt (40)
dup = up’ dx + up,t dt (41)
dEp - Ep,x dx + Ep,t dt (42)

to our system of partial differential equations we arrive at a
system of 12 equations in terms of 12 derivatives which when written
in matrix notation becomes:

B 1r h [~ -
u 1 ¢ 0 00 0 0 0 0 0 0flg |]c
A 0 u'l B 0 D 0 0 O0 0 O Oy M
0 0 F 0 ul GG 0 0 0 o0 o0 U,y GE
o 0 0 0 0 O up 1 cp 0 0 O Uy, PC
¢c 0 0 O 0 O0 O © up 1 0 O E’x M
0 0 0 0 0 0 O H 0 u 1 |[E, | |PE
dx d¢ 0 0 0 0 O ¢ O 0 o0 O g =\ da
p,x (43)
0 0 d& dt 0 0 0 ¢ 0 0 o0 O g du
p,t
0 0 0 0 dx dt 0 0 0 O0 o0 O u dE
pPsX
0 dx 4t 0 0 O0 O
o 0 0 O0 O up’t dop
0 0 0 0 0 & dt 0 O du
0 0 0 TBoux | | %%
O 0 0 0 0 0 0 O O 0 dx dt dE
J Epst p
L = - = -
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Let N*be the determinant of the coefficient matrix appearing in
Eq. (43) and My be the determinant of the matrix formed from the
coefficient matrix with the 1t} colum replaced by the colum vector
on the right hand side of Eq. (43). The solution for the derivatives
may then be written in the form

® "

N 01 ™ M ; N Ty = Hz ;} etc. (44)
The characteristic directions for this system of equations are

defined as directions in the x, t-plane which cause

'S
N=0,
In solving for these directions, it is convenient to reduce

the 12 x 12 determinant N through column operations and Laplace
expansion [24], to the following form,

dx-udt -gdt 0 0 0 0
; Adt dc-udt -Bdt -Ddt 0 0
) 0  -Fdt dx-udt -Gdt 0 0
e 0 0 0  dx-ud d (“
-uP t -cp t 0
0 0 0 0 dxugdt 0
I
0 0 . 0 -Jdt  Hdt dcugdt
d-wdt -odt 0 dx-ydt  -odt o |
. Adt dcudt  -Bdt| x [ 0 dxude 0
0  -Fdt dx-udt o Hd dceugt |
or _
| N'e (dx - udt)[dx - (u + c)dt]ldx - (u - )dt](dx - ud)® =0
f vhere
f esar N -2, 22
¢ p
g ,,
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Thus the characteristic directions are

d—x- = g . :‘_x_ ™ + . i-x- = g =-C
dt L T B T
and
dx _ (46)
de up

where %% = up is a triple degenerate ront.

It can be seen that in order to have a finite solution for the
partial derivatives in Eq. (44), the My must equal zero when N
equals zero. The setting of the Mj; determinants equal to zero leads
either to an identity, zero equals 2ero, or to one compatibility
equation corresponding to each of the characteristic directions
(note that it 1is possible for as many as three distinct compatibility
equations to exist along the triple degenerate root dx . ). For
this system, only one distinct compatibility equatio texis s along

dx . , which indicates that the system is not totally hyperbolic
and thus other equations in addition to the compatibility equations
are needed to complete the solution.

The compatibility equations for this system are
along %% =y
Glo. du_ - (u_-u)do_] + (u-u)? (dE - = do)
P P P p P g
2 F
- {G[op PM - (up-u) PC] + (up-u) [GE - 5 GC] }dt 47)
along %% =utc

(GxB+Dxc) [0p dup - (up-u + o) dcp]

+ (up-u F o)l (B + cdu + Ado]=

{(GxB+Dxc) [op PM - (up-u ¥ ¢) pc)

- 2 (48)
+ (up-u +¢)° [BxGE+ c x GM + A GC]ldt {49)
dx
and along it up :
| du) = PM dt (50)

As mentioned before, there are two compatibility equations
missing. Thus, two additional equations must be supplied. We will
follow a procedure similar to that used in Refs. [6) and (9]
for one-dimensional two-phase flow and Refs. [25] and [26] for
two-dimensional flows and write Eqs. (34) and (36) in finite dif-
ference form along the particle path line of the particle phase
(dx/dt = up) namely: 31




Y =

R sl s o

Dpo

_p - '
ST 9 u,x PC (51)
and
pPE
TR ug +J op’x = PE (52)

The addition of Eqs. (51) and (52) to our numerical procedure
necessitates the calculation of up x and op y at the new point,

To accomplish this we follow a procedure similar to that used in
Ref. [6] and write the "continuity" equation for up and o, along
the gas characteristics, dx/dt = u + ¢, namely:

dup-[upx(u1C)+uP ] dt (53

.
and

] dt (54)

- +c) +
do [o (u +0¢) %, ¢t

P pP,x

Equations (47) to (54), after being written in a second order
accurate finite-difference form, will ve used to generate a
solution to the problem.

Our general numerical procedure will utilize the Hartree
(constant time) scheme. In this scheme, it is assumed that the
values of all dependent variables are known at discrete mesh points
lying on a constant time line. A new time line is established to
meet a stability criterion and the properties are calculated at
points where the gas particle path originating from the known points
on the old time line intersects the new t.me line.

The only problem tl. .t arises in the use of this technique
concerns Eqas. (53) and (54). As can be seen, the time and spacial
derivatives of and o, must be available on the old time line be-
fore the new time plane can be calculated. If the values of up and
op and not their derivatives are specified on an initial constant
time line the x derivatives will be calculated using 3 point forward
or backward difference schemes for the left and right boundaries
respectively and central difference for interior points and then
Eqs. (4) and (5) will be solved for the time derivatives, These
values will then be stored for use in calculating the next time line.

2, Mathematical Implications of the Physical Assumptions

Before examining the effects that our physical assumptions
have on the characteristics, let us see what we can conclude in
general about our system of equations. To do this let us partition
the determinant N',‘ Eq. (45, into 4 minors, namely
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q | q
N'e |- - - : -
o1 Q
) where
dx-udt -0 dt 0
Q - -A dt dx-udt -B dt
0 -Fdt  dx-udt
0 0 0
Q = | -Dat 0 0
-G dt 0 0
0 0 0
Q; = 0 0 0
0 0 0
dc-udt o dt 0

Q4 = 0 dx-updt 0

-J dt -H dt dx-updt

Applying Laplace expansion to N we can see that if all the terms
in Q3 are zero (the particle equations are weakly coupled to the

system, [24]),
*
N=fql x [l -

Thus, as long #s Q3 = 0, any change to the terms in Q; will not
effect the characteristic directions of the system.
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Now let us examine the effects of a) ignoring the terms con-
taining €, and b) including terms which contain a factor o/o .
Case (a) is equivalent to setting D, G and J equal to zero.
Immediately one can see that setting D and G equal to zero cannot
effect the characteristic directions of the system because they
appear only in Q2. Examination of Q4 quickly shows that J does
not enter into the evaluation of the determinant and therefore its
value doesn't effect the characteristic directions. The effect of
neglecting e,, on the compatibility equations is not quite as
simple to see; however, after expanding the M; determinants one
finds that setting this term equal to zero yields two distinct
compatibility equations along %% = up.

The inclusion of terms containing p/pp, case (b), has the
effect of altering Q;, Q, Q3 and Qb by adding a term involving the
acceleration of the gas to the particle momentum equation, a term
involving the acceleration of the particle to the gas momentum
equation, and terms involving both accelerations to both the gas
and particle energy equations. The determinant of the coefficient
matrix, N, for this system is of the form:

dx-udt -g dt 0 0 0 0
-A dt al(dx-udt) -B dt -D dt az(dx-updt) 0
var 0 cz(dx-udt) cl(dx-udt) -G dt c3(dx-updt) 0
0 0 0 dx-updt -o dt 0
0 bl(dx-udt) 0 0 bz(dx-updt) 0
0 dz(dx-udt) 0 0 ds(dx-updt) dl(dx-updt)

where the coefficients a5, a,, bl’ b2, €y €95 Cq» dl’ d2 and d3 are

in general functions of the dependent variables. As can be seen,
this system is quite a bit more complex than the one actually treated
in this report. The expansion of N will result in a 6th order poly-
nomial in (dx/dt)? which must be solved numerically to yield the
characteristic directions. The number of real characteristic directions
resulting from this equation is directly dependent on the values

of the coefficients; thus, the nature of the system, at lease con-
ceptually, could change as the values of the dependent variables
change. The derivation of the compatibility equations present a
similar problem because they cannot be determined until the char-
acteristic directions are known.
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3. Finite Difference Form of the Compatibility Equations

The specific finite difference equations resulting from Egs.
(47) to (51) will now be presented. Referring to Fig. (12) we see
that the locations where the characteristics eminating from the point
being calculated, point 4, cross the previous time line, are labeled
points A,B,C and D.

4
’
s /7<\\ T
7 !
e /I \ ¢ At
c ., / ,’ \\\o
0// u;/ ’up \
7 / ! \ 1
7
—e - ——4 ® s
B C D A
o - - - mesh points
0 - - - intermediate points (base of characteristics)

Figure 12. Characteristic network used in
finite difference scheme

Utilizing the above point scheme and the notation that X, corresponds
to a property, X, evaluated at point A, Xya corresponds to (Xy), and
Aty corresponds to 4t between points 4 and A: equation (47) solved
for E4 becomes

G, a G.o
- _1 4 ‘pb C "pC _
Ev " Ec ™2 (o a2 + (o ~u)? (up4=upc)
Yps" Y Yoc Y
- G G 1 F F
1 4 C 1 4 C
- = - = (0, -0 )+—[—+—-—](o-o)
2 L(UP" ua) (upC uC) pé pC 2 9% °CJ 4 °C
. Atc Gl. °p4 PMlo . GC GEC PMC G4 PCa ) GC PCC
2 2 2 (u R I I
- (upa'ul.) (upc-uc) P P
F, GC F. GC
+ GE, + GE - 40 30 CO é] (55)
4 c |
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equation (48) solved for u, becomes

4
’
1 {Y14 %4 . Y18 %pB
u - u - + (“ - u )
6 B 2|2 v p4 pB
Y26 4 28 B
B Y
1 14 1B
+ = + (c , -0 .)
2 ‘Yzé 4 YZB s ] P4 pB

A, A
1{% , %
B ¢4 ©p

B B
1174 B
'E['Cj*c—]“a'ﬁn) 32 E‘}("a"’n)

2 2 YZ 2 Y26 4

e, (¥, 0 ,PM, Y _o_PM Y, BC
3[14 ps P, Y1m %pp P Y14 PG
Y24 %4 28 B

_ 1B - B + c4 4 + : B
2B B 4 B
A, GC AB GC
4 "4 B
+ 6M, + GMy + = (56)
¢ 4 B
where
Y. -sGxB+Dxc
1
and
Y2 = u -u-2¢
equation(49)solved for 9, becomes j
P .J'
! o mo -1 | Ta%pe Tupal oo
4 A2 v a v A P4 pA
| PP TR P
- (
Y Y
1 34 3A
+ < + (6., -0_,)
2 LYA4 A[0 YAA AA ] pb pPA
1 .
B B
' 1 4 A
- |—  — (E, - E)
2 L A4 AA 4 A
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f

il €4 €A
+ = + (u, = u,)
2 [ A“ AA ] 4 A
A
. tA Y3é cpé PM4 . Y3A opA PMA
21 Yu M Yo A
_ I PG Y3a PO By CEy
Yao 24 Yaa Pa 4
B, GE c, GM ¢, GM
+ A A4 3 A AL 4 (s7)
A 4 A
where
Y3 = GxB-Dxc
and
Yl0 = up -u+ec
equation (50) solved for u 4 becomes
At
D
upa upD + 3 (Pl‘l4 + PMD) (58)

and Eq. (51) solved for cpa becomes

°p4 * ch + 2 [PCA i P('D - opé [ax ]4

",
= 9 [ax ]D (59)

Equations (55) to (59) are the equations used to calculate a regular
point in our grid. Under certain conditions, however, they must
be modified.

The first special case we will present occurs when the proper-
ties at points A,B,C and D are identical. When this occurs, Eqs.
47) to (51) reduce to

du = GM dt
do = GC dt
dE = GE dt
d up = PM dt
= PC dt

d op
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These equations are finite differenced by averaging GM, GC, GE,
PM, and PC between point 4 and point C.

The second special case occurs when either

upé - ua =0
or

upC - u - 0

In this case the use of Eq. (53) would lead to a division by zero.
Thus, we must finite difference Eq. (47) in the following form,

1 At
E, = E. + - )2 (Ga Ge pc)|: (PM +PMC)

(upg™ pC):[ [G(“l. ) * Glucmy c)]

2
At Fi,(u . =u,)
c - - | L4 ps 4
* 77 ®G TG - oy °PC):[ l: %

2
F, . (u .~u.) At
1C*"pC C C
+ ¢ ] [ 2 (Gcb i GCC) . (Glo = oc):[}

+ —2-— (GE4 + GEC)

4. Stability

We have conducted an investigation to gain insight into the
stability of a mixed hyperbolic-parabolic system of equations such
as we have here. Actually deriving a mathematically rigorous sta-
bility criterion for the highly non-linear equations of this re-
port is quite a formidable task and not within the scope of this
research. However, we feel that it is quite helpful to have an
idea of the type of problems that might be encountered in treating
our mixed system. It is our conclusion that the standard stability
criterion for hyperbolic equations may not be sufficient for our
system.

To demonstrate the above mentioned conclusion let us look at a
particular system of equations for a problem coupling sound yropa-
gation and heat flow as presented by Richtmeyer [20], namely;
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Ju ]
= c 3;'(" + (y-1)e)

at
ow Ju
at ¢ X
de_ , al
at 8t2 ax

where u is the material velocity, w = ¢ V/Vo, V is the specific
volume, e = E/c, E is the specific internal energy, c is the
isothermal sound speed, and g is the ratio of thermal conductivity
tc specific heat at constant volume. These equations are formed
by coupling the hyperbolic fluid dynamic equations to the para-~
bolic heat flow equations. The first two equations above may be
said to be hyperbolic in nature, while the third is parabolic in
nature. An analogous situation occurs with the equations of this
report where 8qs. (1), (2) and (3) are hyperbolic in nature, and
Eqs. (.4) and ( 5) are parabolic in nature.

Without going into the finite differencing details which are
presented on page 171 of [20] we will proceed right to the con-
clusions concerning the stability. Although a precise stability
criterion for this complete system was not found, Ref. [20] states
that it is surely necessary for it tc satisfy the stability ecri-
teria of both the uncoupled fluid dynamics equations and the un-
coupled heat flow equation, The stability criteria for these two
systems are respectively:

/i ZxAt <1

and
0 At
(Ax)2

It is also stated that in the limit, as Ax and At go to zero, the
second condition implies the first and thus is assumed to be the
stahility criterion for the system.

<L
2

This example demonstrates the possibility that a mixed hyper-
bolic parabolic system may be finite differenced in such a manner
as to yield a stahility criterion which is directly dependent on

f the parabolic segment of the equations. With this in mind let us
: examine the possibilities that exist for our system of equations.

a. The hyperbolic stability criterion dominates and is given by

At
(|u|+c) AxiK

or
K Ax <
(Tul + 9=

where K is equal to 1. 39
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When this criterion is programmed, the value of K is set somewhat 5
less than 1 to allow for the fact that the properties on the new
time line are unknown when At is calculated and must be estimated.

b. The parabolic stability critericn dominates and is of the
same form as the hyperbolic criterion. This criterion is programmed
in the same manner as the hyperbolic criterion except that K may now
be significantly less than 1.

c. The third possible criterion results from the comparison
of the parabolic segment of our system with the heat flow equation
in Sec. (II,4). It can be shown that from a characteristic stand-
point the roles of x and t are reversed between the two systems.

The stability criterion for the heat flow equation is of the form

2 <K
Ax

which leads to the possibility that the stability criterion for
our parabolic equations may take the form

2

At 2
Ax > l(2 :
or r
At > K (Ax)]'/z = K .
2 3 &
1f K3 is less than Kl then a value of At may be chosen such that ¢
K3 < At < Kl ﬁ

However, if K3 is greater than K; no value of At will satisfy both
the hyperbolic and parabolic stn%ility criterion and the system is 1
unconditionally unstable.

All indications from past research are that this last case does ;
not exist; Rudinger [10] and Rudinger and Chang [11) have solved 3
systems of equations which are quite similar to those presented here ?
and have not reported stability problems. It is felt that, although
care must be taken in running the code, selection of At to achieve
stability can be achieved by using the stability criterion of a. and
allowing K to vary between 0 and 1.

40

MR R : == T S T T T e e S P A




5. General Point Iteration Procedure

The most difficult portion of the computer code is centered on
the solution of Eqs. (55) to (59). At first a simple procedure was
tried where, each equation 1is solved for one particular variable,
then updated by averaging the most recent value with the old value
utilizing a relation of the form

u +BK xu

. .n
n+l AK
where the values of AK and BK can be adjusted at the programmers
discretion. This proved unsuccessful, causing rapid divergence of
the system. Upon close examination of the equations, it was
feit that the best hope for solution would be to uncouple the gas
and particle phases and solve Eqs. (55), (56) and (57) as a set and
Eqs. (58) and (59) as a set. This is accomplished by assuming
that the particle properties are constant while solving Eqs. (55),
(56) and (53) and conversely the gas properties are constant when
solving Eqs. (58) and (59). Even making this assumption, tue solu-
tion of Eqs. (55), (56) and (57) for the gas properties is a quite
formidable task due to the high degree of nonlinearity. It was
decided to solve these three equations for the variables , u and E
using the Newton-Raphson technique. Befcrre proceeding, it should be
ncted that Eq. (55) is linear in the variable E and can be written
in the form

n-1

u (60)

E = E(u,0) (»1)

Thus conceptually, Eqs. (56) and (57) when combined with (61) can
be written in the form

g(u,0) = 0 (62)
f(u,0) =0 (63)

respectivelv. The Newton Raphson procedure for two equations
can then be utilized, namely

Ul ® Y, + Au (64)
and
o +1 ™ %n + Ao (65)
where
= 38 of
Au [f - &5, /XJ
- |g 3 3g
Ao [g 5 f =y ]/XJ
. Of 3g _ 3f 3g
XK= 3¢ 3w " 3w 20
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Before applying this technique further convenient simplifi-
cations were made. They are as follows:

a. along with holding the particle properties constant we decided
to also hold p and ¢ constant. This assumption was more or
less made out of necessity due to the difficulty in evaluating
the partial derivatives of g and f. g

b. Provision was made and subsequently adopted to hold the values
of GC, GM, GE, PC, PM constant through this sub iteration.

Havins made these assumptions preliminary calculations produced rapid
convergence of the Newton-Raphson routine and subsequent convergence
of the entire general point routine by then solving Eq. (58, for u,
and Eq. (59) for oy, and then correcting the entire set of solutions
using equations of the form (60) with AK = 2 and BK = ],

The calculations proceeded routinely for many time lines utili-
zing this technique; however, as the value of started to approach
u (particles became small) the solution to the system of equations
began to diverge. To better understand the cause of this problem
and the necessary steps to correct it the entire system of equa-
tions was closely examined. It was found that the tiyouble was rooted
in the solution of Eqs. (55), (56) and (57) and more specifically in
Eq. (53). To analyze this problem we will write Eq. (53) in a
general form, namely:

fl(u,o) fZ(U,U)
E= (—u—-:‘-)—-(dup-PMdt) + W(dOP'PCdC) + f3(u,0) (66)
|

Now let us examine a term of the nature (u.p-u)m (m=-1,-2) in
context with our iteration proceedure noting that u, is constant.
To do this it 1s simplest to forsake rigor andgo directly to a
typical numerical example. First let us assume a problem where the
difference between up and u 1is large; such as:

= 10
“p
u = 100
Now let us see what happens to the coefficient of the first term on the
right hand side of Eq. (61), which we will call F., if u varies by,
let us say 2 from one iteration to the next, i.e.  Au in Eq. (64) is
equal to 2.

1) for u = 100 we have

f100
F100 -1
1 8100
2) for u = 102 we have
f102
I..102 g
1 8464
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100 102
=z

1 1

true we have a percent change in F

assuming that f which in reality is pretty close to belng

1 of approximately 47.

For our second example let us assume a problem where the dif-
terence between up and v 18 small such as
up, = 95
u = 100

Now again let us assume that u varies by 2 from one iteration to the
next and examine Fj or

1 for u = 100

f100
FlOO -1
1 25
2) for u = 102
102
e I
1 49

Making the same assumptions on f. as in the previous example we can
see that the change in F; is now approximately 50%. It turns out
that this rapid change in F; causes the entire Newton-Raphson tech-
nique to become unstable.

The problem now centers on what steps should be taken to correct
this deficiency. It is quite obvious that we cannot tolerate "large'
changes in u during an iteration when the values of u and up are
"close". One approach to the problem would be to attempt to improve
thr first guess; however, first guesses consisting of the base point
properties and the solution of the linearized system of equations
proved unsuccessful and this approach was abandoned.

The approach that proved successful is as follows. First, attempt
to solve the complete set of equations. 1If this falls, set fj equal
| to zero and solve that set of equations. Then use its solution,after
{ having corrected E4 by adding the f; term back in,as a first guess
in solving the complete set. If this still fails, set both f] and fj
equal to zero and follow the same proceedure.

The degree to which the solution of the equations with f; set
equal to zero approximates the solution to the complate set is re-
lated to how close the term (du, - PMdt) is to zero. Notice that
his term is in the same form &= Tq. (35) the only difference being
that Eq. (61) is written along dx/dt = u and Eq. (35) along dx/dt = ug.
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Thus {t can be easily seen that as u, approaches u, the term

(du -PMdt) written along dx/dt = u approaches zero and the
solution of the simplified system approaches the solution of the
complete system. In summary, it should be noted that although the
term (du,-PMdt) 1is approximately equal to zero when the system
converges, during the iteration proceedure it can become quite large
and cause convergence problems.
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IV. Results and Discussions

Before presenting a complete test run for the M16 rifle, we will briefly
point out two features of the code TWOFLO which are not treated by other codes.
The first feature is the treatment of a gas only region behind the bullet.
typical plot of € and u vs. time in the vicinity of the interface between
this gas only region and the two phase flow region is shown in Fig. (13).

v 2|
034 =
2
S I S
0.24 300 -

001 I 200

- - l J‘b
0.0 = 1003703 0.04 0.05
INTERFACE BULLET

Figure 13. Plot of loading, €, and gas velocity, u,
vs. distance from the breech, x.

Notice that at this interface there is a discontinuity in € leading to a
discontinuous drop in particle velocity. The second feature deals with a
shock wave traveling behind the bullet. Figure (14) shows a plot of the
physical plane and a plot of pressure vs. position as the shock passes

through the gas-particle interface. Referring to the pressure curve in

Fig. (14) one can see that the effects of the contact line have been neglected
and the rarefaction wave has been smoothed out consistent with the dis-
cussion in Sec. (II,7)
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Figure 14. Plot of TWOFLO calculations for a right traveling
shock wave passing through a gas-particle interface.
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Presented nex. are numerical results for the MI6 rifle beginning at

the time of complete ignition and extending until the bullet leaves the
harrel.

Two separate runs were made each with a different size propellant particle.
The propellant used is pancake shaped, (1.814x10‘3Kg of WC 846). The drag
force between the particles and the gas 1s approximated by that of a sphere
having the same radius as the radius of the pancake. The propellant was
assumed to be compacted by the initfal primer blast. This is treated in the
code by shortening the rear of the cartridge by 0.005m. The loading after
compaction, €, was 0.575. Other pertinent data for these runs can be found
in the sample input section of Appendix C.

The sizes of the propellant particle used for the runs are summarized

as follows:
Particle Radius Particle Thickness
RUN A 2.730 x 10 °m 3.810 x 10 *m
-4 -4
RUN B 1.365 x 10 m 1.905 x 10 m

For Run A the particle dimensions conform to the average dimensions of the
actual propellant. The particle size of Run B is one-half of that of Run A.
Run B was chosen to determine the effect of increasing the propellant surface
area. The calculated results for these two cases are compared with the
experimental results of Trafton {28].

Figure (15) shows the velocity of the bullet plotted against the distance
irom the base of the cartridge. Run A yields a muzzle velocity that is 35%
lower than the experimental ore; Run B produced a much higher muzzle velocity,
but is still 17% lower than the experimental value

Examining Fig. (16) one can see that the pressure produced at the
midpoint of the chamber by Runs A and B brackets the experimental values
fairly well, noting that the 300 usec time duration for complete ignition to
occur (this represents the time between primer ignition and the initiation
of TWOFLO calculations) is not exact; any error in this time would shift the
pressure curves horizontally. Although Run B produces pressure higher than
the experimental value at a station in the chamber, it produces a much lower
pressure at a station further downstream in the barrel, as shown in Fig. (17).
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Figure 15.
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Plot of x  (location of bullet measured
from thg breech) vs. bullet velocity.
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Fig. (17) is a plot of pressure vs. time at the gas port,
substantially down the barrel. By this time, both Runs A and B produce
pressures that are substantially below the experimental results. These
results seem to indicate that too large of a portion of the energy, as
computed by TWOFLO, remains in the rear section of the barrel whereas it
should be more concentrated near the bullet.

There are two poussible reasons for the discrepancy between the
calculated and experimental results. The first is the uncertainty about
the physical parameters used as input data in the calculation. These
include the burning rate of the propcllant, the drag coefficient of
particles, ignition time, the state at the end of the ignition process,
the friction between the bullet and the barrel, etc. Hopefully, a
computer code that is numerically accurate, together with certain
casily measured physical parameters, can be used to determine all the
other parameters, in the future.

The other possible reason i1s the inaccuracy of the code, either
in the governing equations used, or in the numerical solution of these
equations. Preliminary test calculations show that the numerical
solution converges; solutions from using two different mesh sizes
vary very little. Calculation of a simple one-phase flow problem also
indicates that results are very close to the exact solution. Therefore,
we have confidence in the numerical accuracy.

As discussed in Appendix A, the governing equations used involve
certain approximations. In particular, a term in the particle momentum
equation has been neglected for simplicity in applying the method of
characteristics. This term is relatively small for small values of ¢,
but can become important for large value of €. It can be seen from
Eq. (Al2) that by neglecting this term, we decreased the particle
acceleration. This might have contributed to the slower motion of the
particles, and the concentration of energy and pressure near the chamber.

For further development of this work, we suggest the following:

a. Modification of Governing Equations - Although the equations we used
are quite elaborate and include many more terms than most earlier
works, preliminary numerical results indicate that certain
neglected terms should be retained. For instance, the Du/Dt term
in the particle momentum could be retained.

b. Complete Test Runs - Appropriate sample problems should be run with
the code to ascertain the convergence and stability of the numerical
calculation. Comparison with simpler problems with exact solutions,
and with other numerical methods should be made. A parametric
study t¢ determine the importance of various terms in the
equations, and the effect of certain physical quantities would
also be desirable.
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d.

made.

1.

2,

3.

Comparison with Experimental Results - This type of comparison
can serve to determine the accuracy of the calculated results
if the experimental results are accurate, or vice versa.

Solve a Problem with Shock Waves - This code has the capability

to treat shock waves; shocks are traced exactly, instead of being smearcd
by artificial viscosity as in finite-difference methods. The
subroutines are all debugged, but have not been tried out on a

physical problem with shocks. This should be done.

In conclusion, the following points about the TWOFLO code can be

It is one of the most "sophisticated" one-dimensional codes. It
treats the two phases separately, includes the effects of wall
area change, wall friction, heat and mass transfer through the
wall, includes the 3¢/3x effect, etc. The governing equations
include many additional terms as compared with other existing
codes.

It is accurate. TWOFLO incorporates the method of characteristics,
which is inherently more accurate than the finite-difference method.
It handles the initial and boundary conditions in a logical manner.

It has the capability of treating shock waves. Shocks are traced cxactly.
For those physical problems where shocks are present, this code

can yield more accurate results. Even in problems without shocks,

the characteristic lines and contact lines calculated from this

code can reveal more about the nature of the flow.
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APPENDIX A-DERIVATION OF TWO PHASE FLOW GOVERNING EQUATIONS *

In deriving the governing equations for this system let us
treat the gas phase and the particle phase separately while cou-
pling their motion through interaction terms. When treating each
phase, we will assume that it forms a continuum and occupies the
entire control volume at 2 given imstant. In utilizing this con-
cept, we must replace the classical density which represents mass
per unit volume, with a new term represerting mass per unit volume
of mixture. We will also assume that the particles are rigid and
that they may be considered to be large with respect to the molec-
ular size of the gas and thus do not contribute to the pressure
of the mixture. Having taken these assumptions into consideration,
we may write the governing equation for each component of the
mixture.

1. Continuity equations

The continuity equation for the gas phase can be obtained by
establishing a control volume and 2quating the time rate of increase
of mass inside the control volume to the time rate of mass added
to the control volume, where the mass added is composed of three
terms; the net mass flux into the control volume through the end
surface normal to the flow, the mass addition resulting from the
particles burning and the mass transport through the wall, or

B2 L

which can be rearranged as

Do, du__oudh
Dt *a ax A dx LA Yy (A2)
Similarly, the continuity equation for the particle phase is

9(c_A) 93(0_u A)

—P

at - - Ix - (wA) - (WUPA) (A3)

which can also be rearranged, producing

Dpo aqp apup
bt T 2 T TA & Y- “wp (A4)

2. Momentum equations

Before proceeding to derive the momentum equations we will
make several additional assumptions, namely:

* We would like to make a special acknowledgement to Dr. Aivars Celmins who
made an invaluable contribution in the formulation of the equations in
this Appendix.
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a. When mass transfer occurs between the phases, the par-
ticle phase always loses mass, the gas phase always gains
mass; or w > 0,

b. The gas and particle phases may discharge through the
wall, but injection is nct treated, or

w > 0; w_ >0,
v - wp —

When leakage occurs, the gas and particle phases lose

mass that is moving ar velocities of u and u
respectively. One possible assumption is to ¥Bnsider the
discharged mass having the same axial velocity as the
"parent' media. This is justified by the fact that within
the flow field our one-dimensional assumption does not
account for variations in velocity across the cross-
section.

¢. During the burning process the gas phase gains momentum
equal to wup while the particle phase loses the same amount.

Having made these assumptions we will now derive the momentum equa-
tion for the gas phase which equates the time rate of increase of
momentum in a control volume, to the forces acting on the control
volume (positive if acting in the positive x direction). These
forces include the reaction of the net momentum flux through the
main entrance and exit of the control volume, the force due to the
momentum flux associated with mass addition from burning, the v.-
action due to momentum loss associated with masspassing through the
wall, the pressure gradient force, the interaction force of the
particles acting on the gas and the force from the outside wall, or

2
3(cAu), _3(cAu’) - Al
= oty wupA (u, uwA) A s Fa+ FA (AS)

vhere the term u_is the x component of velocity of the gas leaving
the control volume through the wall.

Equation (AS), after combining with the gas continuity equation,
Eq. (A2), can be written as

Du__23p - F =y - .
s v +F, -F+ w(up u) ww(qw u) (A6)
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Similarly, the momentum equation for the particle phase is
3(o_A 3(0_Au®
(Qp up) i ( pAu )

at X

- = A) + FA+F A A7
(wupA) (wwpuwp ) up (A7)

which upon simplification becomes

=F +F-

UP Dt wp wU'P } (AB)

u_=-u
( P P
where the term u,, is the x component of the velocity of the
particles passing through the wall,

In Eqs. (A6) and (A8), the interaction force between the gas
and the particles, ¥, in general, includes four types of forces,
namely, the viscous drag force, the pressure gradient force, the
apparent mass force due to the .acceleration of the gas surrounding
the particles and the force due to nonsteady flow. Note that the
drag force does not include the pressure gradient effect. Often,
the drag force determined experimentally contains both the effects
of viscosity and pressure. Special care must be taken to separate
these effects in using the present set of equations. A detailed
discussion on these forces may be found in Hinze {[Al], Rudinger [A2],
Pai [A3] and Willis [A4). Let us follow the approach of Hinze, and
consider the force acting on a spherical particle, given by

2 3 3 pPu
ac M .. - _m 3 11D Du __ p
By = Cp g plumugfumu) = Z= 20+ 90 (50 -5

t DPu
+ -;-— ﬂz Ympu Iu %:'l- - EE) (t'-‘r)”l/2 dt

If ve now define the number of particles per unit volume of mixture,
N, as

[+)
Ne P

pp x(Volume of a particle)

6¢

n03
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then

4D 3x Dt Dt
P
D" u
9 Jﬁﬂi bu_ "% 1/2
D nJ[m D.](tT) d]
0 :
.- R
€ 3y + F (A9)

where F reprz:sents the interaction force without the pressure
gradient term. As the value of aﬂ.becomes small, the apparent mass

force and the force due to nonute%dy flow become negligible. It is

assumed for the problem presented here that the values of o/op
encountered are small enough so that these terms can be neglected
leaving us with an expression for F which includes only the
viscous drag force, namely:

- L. = -
F > Kl |u upl(u up)
P
where

3C. o
K -—_D—-R
1 4D

Setting u, equal to u and Wp equal to up, Egs. (A6), (A8) and
(A9) combine to become

Du, (-e) 3 . _ L (pp) - y(u- i
Dt + p 3% o ((F Fw) w(up u)+ww(uw u)) (A10)
and
Py, e
Dt + ;—p— ™ - G‘; [(pr + F) - wwp(\xwp-up)] (All)

respectively. Solving eq. (Al10) for éz-and substituting into

Eq. (All) yields: 9%
Dpu
—P_ o Du_ 1 . o4 € [F-F -w(u_-u)] (A12)
De o, Dt o wp (1-¢) vop

+ mw(uw-u)] - "’wp(uwp-up)}
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The term g%-%% will now be neglected for simplicity. With this term

neglected, the particle equations are weakly coupled to the system, i.e.,
the particle equations do not contain derivatives of the gas variables '
u, o, and E. The ratio of this term over the first term of Al2 is

Bu ) RO S
° Dt - 3x * l- € (Fw F)

ﬂ'n p L, 1
l".'1.'4I:ll|: -3x+-e- (F+FVP)

which is much less than one when p/p_ and ¢ are both small. For instance,
in the numerical example treated later, this ratio is less than 0.15 for
most points in the flow field. However, near the breech and during the
time immediately after initiation, this ratio may be larger than 0.5 and the
omission of the Du/Dt term may be a poor approximation. An attempt should
be made to retain this term in future refinement of this work. Eq. (A8) is
then reduced to

Py
—P oL (PR ) - w(u )+ (uu)
Dt o 1l-¢ w wupn AL g

+ + - - Al3
(F pr) wwp(uwp up)} (A13)
Equations (Al0) and (Al3) are the momentum equations used in the computer
code for the gas and particle phases respectively.

In the derivation leading to Eq. (Al10), we have implied that the
pressure force acting on the particles is - €3p/3x, which is different from
Pai's expression of -3(pc)/9x. We feel that our approach is more realistic
for the present problem. In order to get a better feel for this term let us
examine in more detail the pressure force acting on the particles and
compare our approach to Pai's [A3]. Let us begin by discussing Pai's treat-
ment of the pressure itself. In his approach, he assumes that the particle
density p, is constant (the particle concentration % is variable) and that
the pressure of the mixture p, which he calls total pressure, is the true
pressure of the gas. He defines the gas partial pressure, pp, as the
pressure of the gas of fixed mass and fixed temperature, if !t were to
occupy the entire volume of the mixture. If the equation of state of the gas is

} P = p(r,E) (A14)
i then Pg is defined by,
| Pg = (0,E) = plp(1-¢), E] (A15)

!
|
[

In addition, 1f the pressure is a linear function of p(p = pf(E))
vhich is the case for an ideal gas, then pg is given by

pg = (1-¢) p£(E) = (1-¢)p (A16)
The total pressure of the mixture is considered as the sum of the
partial pressure of the gas, Pg» and that of the pseudo-fluid of
particles, pp or

P=rpgt Pp
From the above, it follows that

Pp ® €P 59




Note that the definition of the partial pressure of the gas, Pg
follows Dalton's law of partial pressure, i.e. the partial pressure
of a component in a mixture is the pressure that the component would
exert if it were alone in the container. However, in reality,
partial pressure of the particle phase Pps does not obey Dalton's
law, 1.e. if the particles were alone in the container they would
not produce a pressure.

Now, we will proceed to discuss the pressure force acting on
each phase. In Pai's approach, the particles are considered to be
smeared and occupy the complete volume of the mixture, with only
their partial pressure, p,, acting on them. In our approach, we
also consider the particles to be smeared; however, we assume that
they occupyonly a portion of the volume having an effective cross-
sectional area which is being acted upon by the total pressure.

The particle equation of motion as derived by Pai is of the
form, (the following discussion also holds for the gas)

D yu op
o 2L+ —-P-----. vhere the right hand side contains no derivatives.

Dt ax
P 35522

The pressure gradient term in this equation can be written as ™
which is different from that in our equation of motion, ¢ %%.

In other words, we do not include the term p %& in our equation of

motion. We can justify this by analyzing the following models.
However, first, let us review the derivation of the momentum equation
for a single phase flow with area change.

p+-:-§dx

« dx %

Figure Al - Control Volume of a $ingle Phase Flow

AR . o

Considering the control volume shown in Fig. (Al), the net pressure
force, p,, acting on this control volume is in the x direction and

given by
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dA

dx dx)

ap dx, dA ]
-+ + 2R CXy O L 22
P, PA+ (p s 2) dx 9% (p+axdx)(A+
where the second term on the right hand side is the pressure force

on the side wall. After neglecting terms of second order in dx,
the above equation becomes

)
pn--AsﬁdXQ

Note that there are no first order contributions from the change in
area dA to the net pressure force; the first urder effect of the

pressg§e force due to %% on the right-hand surface is cancelled by

the pressure force on the side wall.

For the particles in a two-phase flow we have a similar
situation (Fig. A2). Let A be the cross-sectional area of the
mixture, €] A be the equivalent cross-section area of the particles,
and €7 dx be the equivalent length of the particles such that
€] €2 = €,

p+%£'dx

TEER!

O
O
RERRERE

Figure A2 - Control Volume for a Particle -
Gas Two-Phase Flow

The net pressure force on the particles is then

eodx 3(eqA) 3(e,A)
I ~2 Ll _ P J
pn = PCIA + (P + 3% ) ) % ax (p + % € dx) [EIA + -—ax—--e2 dx

which after neglecting second order effects becomes

--3P
Py x A e dx .

Note that in our formulation, we treat the change in ¢ as a change
in area, resulting in a net pressure force on the particles that does

not include a term of the form g&.
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The same conclusion may also be reached by considering an extreme
case, where all of the particles are concentrated in a "rod" of area A ¢

and length dx, as shown in Fig. A3.

€A + géiél-dx

EA
\\ Rod

|
o
H
]

Figure A3 - Particle Rod Model

The net pressure force acting on the "particle rod", Por’ is then

3p dx, 93(Ae) 9 d(Ae
- +—2— =
pnr pAe + (p ax 2 ) 9x az (p + Sﬁdx)[Ae ad -é;—zdx]
or neglecting second order terms

--al
Par ax Ae dx
Note that the pressure acting on the particle phase in this model acts
on an area €A, while the pressure acting on the gas phase acts on an area
(1-e)A. Thus, for the rod model, the pressure force acting on the
particle and gas phases are respectively - Ac %2 and - A(l—e)%zu

x x

Recognizing that in this model_the interaction force does not contain a
pressure gradient term (F not F must be used) we have consistency between
the simple rod model and the complicated continuum model.

3. Energy Equations

Before deriving the energy equations for the gas and particle phases,

let us review the general energy equation for a control volume. The
first law of thermodynamics for a control volume which is fixed in space

(Eulerian approach) is
62
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2

Q [o(E + 1’2—)]dv

J
= + —
A " Psnafe Pshear + f ot
c. v'

2
+ § (H + Ez—-)pu dA.
C.S.
where

QA = rate of heat added to the control volume (energy per
unit time)

= power delivered from medium inside the control volume to
the outside, due to rotating mechanical members (work
per unit time)

Pshaft

Pshear power transferred from medium within the control volume to

adjacent outside medium through shear force.

Note that the outside medium must be in motion to have power
delivered; if the outside medium is stationary, the power
will be zero even though there is force transmitted.

fc - [ ]dV = the time rate of increase of the internal and kinetic
U energy of the medium inside the control volume.

fc o [ JdA = the net enthalpy flux and kinetic energy flux going out
e of the control surface, (work per unit time).

E = internal energy of gas per unit mass of gas

H = E + E-- enthalpy of gas per unit mass of gas.

The energy equation for the gas phase is then

u?
oA(qtq) = FupA+ oA + o= [p(l e)A (E + —- )] +

2
2. = v L.R
+ = [pu(l-¢)A (E + + p)]

2
a uz 2 uizi v\\27 pw E
- + -2 _By+ +—+ —+—) + A
WA(E + = "p) wAE, + = Ay ) +uw o5 (A17)

where the total dissipation ¢ has been broken down into a boundary dissipation
term ¢p, and an internal dissipation term, ¢; (see Appendix B) namely:

¢ =01 + 0

¢p = F (uyq = u) = F(uy - u)

where

The term £ is the internal energy of the combustion products calculated
at the flame temperature and is not included in q. Care must be taken

in supplying the value of q to insure that £ 1s not included. In writing
Eq. (Al7), we have assumed that the values of q and £ do not include the
effects of the velocity of the particles and the flow work. Resulting
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from the creation of gas mass, thus these terms are treated separately in
the 5th term on the right hand side of Eq. (Al17). It is felt that the
kinetic energy attributed to the velocity of the combustion products as
they move away from the surface of the burning propellant i{s included in q
and need not be isolated. The sikth term on the right hand side accounts
for the energy lost by gas passing through the wall. The last term
represents the flow work associated with particles leaving through the wall.

When calculating the work done on the surroundings, it should be
noted that there is no work done by the wall friction force since the
wall is stationary; however, the interaction force F (remembering that
in accordance with the simplified model the interaction force is F and
not F) does do work since the gas particle boundary has a velocity equal
to . To clarify this point, let us first consider a viscous fluid
flowing next to a stationary solid wall (see Fig. (A4)). The velocity of the
fluid in contact with the wall must be zero. The velocity increases from
zero at the wall, through the boundary layer to its "free stream" value of u.
If our control volume is taken with the solid wall as a boundary, then the
shear force Fg does no work on the medium outside the control volume, be-
cause the boundary of the medium is at zero velocity. The viscous stress
in the boundary layer within the control volume will dissipate mechanical
energy into heat, but this energy transfer is within the control volume and
does not represent energy transfer across the control volume boundary. If
the boundary of the control volume is another fluid, then the rate of work

————— Free Stream Velocity - u
—
]
/

u =90
wa

Figure (A4) - Viscous flow next to a wall
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dore by the medium to the outside, p hear’ is Fg uy Adx, where uy is the
velocity of the common boundary of tge ?fuids, not their free stream
velocities. If the boundary is a solid moving at a velocity w,, then the
rate of work done is also Fg u, Adx.

In our present case, the particle phase 1s "solid", therefore the rate
of work done by the gas on the particle is F uy Adx and conversely the rate
of work done by the particles on the gas is -F u, Adx.

If we now define Q and Q, as the total energy addition terms due to
burning and energy transfer through the wall, respectively, as

Q= [qo + w(E + % uﬁ -pn )] (A18)
and P >
Q- il e e )

W
and simplify Eq. (Al7) by subtracting Eq.(A2) multiplied by (E + u2/2) and
Eq.(A10) multiplied by u, we arrive at the final version of the energy
equation for the gas phase, namely:

DE,pou_pule,_l o - - +
Dt + p 3x g 3x o© [ + o(E Fw) Fup 0I

- 212 12 - P _ pull-e) 3A
w(uup 7 U + E) + ww(uuw 5 u + E) wwp 5 A x ] (A20)

P

For the current problem, ¢; is assumed to be negligible. Similarly,
the particle energy equation can be written as

2 12 2 1.2,0p
op(qp +q )A FuPA + 5;-[ppeA(Ep + > up)] + 5;[opeA up(Ep + 3 up + pp)]
P
1l 2 1 2 1 2 w
P 4 = ye 4 B = uy* += —
+ w(Ep + 2 up pp)A + wwp(Ewp + 5 uwp 2 va + op)A (A21)

where we have defined the enthalpy of the particle phase, Hp, as

H =E +-+& (A22)
P P 9
P
and the enthalpy of the particles leaving through the wall, pr. as
P
wp wp ¢
P
1f we now define Q_ and , the tntal energy addition terms due to burning

and energy transfer with the wall, respectively, as
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Qp - [op qp - u\(Ep + % us + gt)] (A24)
and
1 2 .12 Py
pr - [op Yp " mwp(Ewp +3 up t 2 Vin * 6—0] (A25)

p

and simplify Eq.(A21) utilizing Eqs. (A4) and (All) we arrive at the
final version of the energy equation for the particle phase; namely:

pPE 3u_ pu
__.R+L__2+_2.§_E.-_l_[Q +Q
Dt p_ 9X o X O P wp
p P P
& AN
+ — ——
+ up pr (Ep + 2) (w + wwp) rely™ ] (A26)

A simpler form of the particle energy equation, (A26), results if we
assume that the pressure term in Eqs.(A22) and (A23) may be dropped and
the flow work associated with the particles phase is accounted for by the

term ¢ Aup %% . This 1is equivalent to dropping the pressure contribution
in the last two terms of Eq.(A21) and replacing the term iL.(eAup p) with

eAup %5. The resulting particle energy equation is then

P
D'E 2 1

—P . , - P P 1.2
T qp + qu + ‘,pr[(rsp Ewp) 2(up uwp) + 2 va] (A27)

It should be noted that Eqs. (A26) and (A27) are presented here for the
purpose of completeness only. They are uncoupled from the rest of our
system and do not enter into the calculations.
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Apprendix B%, Derivation of One-Dimensional Tube Flow Equations

During the course of deriving the two-phase flow equations, some basic
questions were raised about the approximations involved in the one-~dimensional
representation of fluid flow in a tube. Most engineering textbooks treat
the one-dimensional flow problem by applying the conservation laws to the
one~-dimensional tube directly, without relating the resulting equations to
the three-dimensional field equations. In this appendix, we shall derive
the governing equation for one-dimensional, one-phase tube flow, from the
general three-dimensional field equations, and indicate the approximations
involved.

The three-dimensional governing differential equations are (see, for
example, Refs. Bl and B2.)

the continuity equation

ot
the momentum equation

3P 4, 3 -
+ axi(p Ui) 0’ (51)

Ju du 9T
B2
e P WD N SIS Rt § | (62)
ot h| axj 0 axi i, ax1
and the energy equation )
du aq
DE ., p 1 1 1 %1
— — R -_— - e ——
Dt o Bxi Q+ p ¢ p 93X (83)
i
where X, is the component of force per unit mass due to external sources,

i

Tij is the viscous stress tensor, Q is the heat addition per unit mass per
unit time, q, 18 the heat conduction within the eiement, and ¢ is the
dissipation %unction given by

. du ou,’
-1l R S |
v 2 Ty \ 3%, T ) (B4)

i
We shall first make the approximation that u, << Ups Uy << uy and thus the
only non-vanishing component of velocity is u;. In a more precise manner,

we may relax the requirement on u; and uj and only require that their integral
across the area normal to the flow direction be small, namely:

“ "2 g ” dA (B5)
<< u
A Y3 1

where for convenience we will interchangeably use the notation (x,y,z)
corresponding to (xl.xz.x ). For simplicity, we shall drop the u, and uy

temsright from the beginning. Equations (Bl) to (B3) then reduce to

* Dr. Alvars Celmins first proposed the definitions of average quantities
used in this Appendix and the approximations involved.
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at %
Du, 3 _ i1
—_— = - = (
° e ¥ ax ox 3XJ (37)
DE, p 3u 1 du au 3y 1 %9y
m—— —— -— ——— _—+ v —— - e ensmm—
peto - 9% | Fxx ox Yy by | Txz 3z ] P X, (BB)

where the subscript on u has been dropped. Integrating the continuity
equation, (B6)over the cross section of the duct, we have

@) o Jo- )

We may interchange the order of the x differentiation on the area
integration without using a double integral extension of Leibnitz's rule,
which is not readily available, by considering the area integration as a
single integration. Referring to Fig.(Bl) it can be shown that if

Duct wall

it |

A(x)

Figure (Bl) Diagram Showing Cross Section of the Duct

a parameter r = r(y,z) exists such that

ri{x,y,z,t) = r(x,r,t) (B10)
and
A = A(x) (B11)

where ' is any flow variasble note that for a circular cross section
r is the radius and A(r) = nré)
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then

2 - N dA
” [ A5 ” I dA rlc = (B12)
A A

where C is the boundary of the cross section of the duct. If T
vanishes on C, we then have

d 3
[rak fra
A

Applying Eq.(B13) to Eq.(B9), assuming that u vanishes on C, we arrive
et the continuity equation in terms of average properties, namely:

2y o 35 =
EE(AD) + 3;(Ao u) - 0 (B14)

where the average density o and average velocity u are given by

p = % !I p dA (B15)
A

B alke ” S dk (B16)
AB )1y

Note that u as defined by Eq. (Bl6) is the "weighted" average, not the
simple average, i*, given by

- i- ” u dA (B17)

The quantity u* does not satisfy the continuity equation exactly.

The momentum equation, (B7), when combined with (B6) multiplied by u,
i can be written as

| 2 T
f 2.(&'1...3.(.9.1.).4.22..9,(.,._11 (B18)
at '} X axj
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Integrating this equation over the cross section, and applying Eq. (B12),

we obtain
aa: ” (pu)dA + ai ” puz Gt aax ” P dA
A A A

9t I
P oX dA + dA (B19)
Cdx A A axj

The last term in (B19) may be integrated as

a1 at 9T 9T
[ poaef[(Gmeipe ) 0w
A °% A y

9
” . Tax & 92 I ( LI A Lot dz) (B20)
A C
where Green's lemma has been used. The last term of (B20) is the axial
component of the shear force on the boundary of the cross section, which
will be designated as F . Defining the averages p and X by

- 1

P-;”Ap dA (B21)

)-(-'LHDXdA (B22
YRR )

Eq. (B19) can be written as

Mo w) 3o 2 LIV E - dA
36 T u)+ Asn =M X+F -p

dA 3 3 2 3 ,= =2
+p. 22 s - =t =
pCdx+”A ax Txx 9A 3:”:“ dA+3xA°u) (823)

3 ,,- =2
vhere the term 3;(Ao u) has been added to both sides of the equation.

Combining Eq. (B23) with (Bl4) and neglecting the last five terms in.
(B23), the one-dimensional momentum equation becomes

- — - F

™ qdu 13, 5,u

M S R (B24)
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The approximation involved in deriving the momentum equation is then

[ arxx
Rl ¥, | (B25)
A
[ = -
J (ouz)dA - Ap u2 << |Ap uzl (B26)
‘A
LR 3
|5 (¢ = B2 << |a 22| (B27)

The term F_ is the frictional force per unit axial length between the
fluid and the wall; it may be measured experimentally, or estimated.

The conservation of energy, in differential equation form, after
neglecting u; and uj, is given by Eq. (B8). Adding Eq.(B6) multiplied by

E to Eq.(B8) multipiied by o and integrating over the cross sectioa, we
arrive at

~ aq
3(pE) (pEu) 4 _3 3p du
”A[a: e Ix JdA B ”A(OQ axi 3x(pu) S ax T Txx ox

du au.
+ Ty 3y + T az)dy dz (B28)

The last three terms in Eq. (B28) represent the viscous dissipation, 5.
The last two terms will b2 simplified according to the following:

3y
c
T atxz art arxz
-/l a(=x u- =, dy d

-F,u, ”u( 3y Ry dydz+” (u-u) Ty 35z /%Y 92

A\ A

- - at arxz
-F'uw-l"wu+”A(u-u) -—Qay +37 ) dA
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or

O-OB+OI (B29)
where
%afF u -F 3
v wa
Tt T
2 - - xy xz Ju
OI IIA[:(U u) 3 + =2 + 1 5 dA (B30)

and Ua is the velocity of the fluid at the wall. The first term on

the right hand side of Eq.(B29), ¢,, represents the dissipation of energy
through wall friction (boundary digsipation). The term 31 represents
internal dissipation. The reason for separating the total viscous
dissipation, ¢, into these two components is to conform to the accepted
engineering practice of utilizing a wall friction coefficient for one-
dizmensional problems. It must be realized that the application of a steady
state friction coefficient tu an unsteady problem may invelve substantial
error.

1f we now make the following definition for average quantities,

fel ” oE dA (831)
LR R
q =4 alt (B32)
Q.E“ (°Q-§I)dA
§ and neglect certain terms, which involve the following approximations,
| ” oEu da - 5 EaA| << [P Eu Al (833)
A

” pu dA - p GA| << |p WAl (B34)
A
Ep'dA--‘a-iA <<|-3§.A|
A“ ax U ax U Ix (B3S)
Equation (B28) reduces to
3(As E) , 3(A0E u) _ =,5 _ ,= 3u -
at o PAQ - Ap oo + Folu, -uw)+ ;I (B36)
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Combining (B36) with (Bl4) and, (B24) multiplied by u, we obtain,

WA d == R -
—|E+)=- 5(Aup)+xu+Q+quw/Ao+ﬁ (B37)

%II"‘

Dt 2

If the dissipation function ¢ had not been separated as in Eq.(B29),
Equation (B37) would then become

-d F -
= L 4 e - o o P e ¥ u oh L B38
el +3 ) = (Aup) + Xu+0Q+ s u + - (B38)

Under certain situations 9. in Eq.(B37) may be neglected. It is
realized that ¢ must at all times be positive and if the problem is such
that either ¢pg or 51 are negative this assumption must be reexamined.
For all practical problems, (w, - u) and F, are opposite in sign, therefore,
the term ¢p is positive. Within the boundary layer where 91 /3y and
Atxz/3, are large and positive, the term (u - u) is also positive, therefore,

¥1 is also positive.

The one-dimensional equations are, in general, good for flows of close
to uniform velocity distribution. The viscous force is then negligible ex-
cept near the solid wall, where a thin layer of boundary conditions exist.
This boundary layer is responsible for the wall friction term Fy,.

A typical set of one-dimensional tube flow equations may be found in
Ref. (B3).
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APPENDIX C - COMPUTER CODE

This appendix contains a cmplete description of the computer
code TWOFLO including input and output information. A brief explana-
tion of the function of each subroutine used in the code is presented
along with instructions for altering the user specified routines.

The nomenclature used in the actual code is, wherever possible, con-
sistent with this report limited only by the fact that Greek symbols
and lower case letters are not available in Fortran IV the code
language. TWOFLO is written to accept any consistent set of units or
can be run nondimensionally.

I. Description of Fortran Variables

The following is a list of the major FORTRAN variables used in
the TWOFLO code. Those variables followed by a dash, e.g. UP-, are
suffixed with several different qualifying symbols, point numbers,
point letters, variables of differentiation, and so forth. For an
explanation of these symbols, see 3 below.

1. Flow variables

CG- = ¢
EG- = E
FP- = FE
ES- = Ep
PG~ = p
RG- = »p
RP- - pp
G- = T
UG- = u
Up- = Up
XX- = x

2, Miscellaneous variables

GC- = GC
GM- = (M
GE- = GE
PC~- = PC
PM~- = PM
PE- = PE
F- = F
FWG- = Fw
FWP- = pr
G- = Q
QP- = Qp
QWG- = Qy
QWP- = Qup
W= =
WWG- = wy
WWP- = Uwp
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DTT- = At
Dt~ = At
DX- = Ax

3. Suffixes - suffixes are used to describe

a. mesh poincs, i.e. SP(K,I) where
K = time line (1,2)
I = point number

b. a particular point in the iteration scheme i.e. SP1, SPA,
etc. where 1 and A are point designations.

c. derivatives, i.e. SPX-, SPT- and GEUG-
SPX- = 30p/3x
SPT- = Gop/at
GESP- = 3GE/3c0p
(suffixes X and T represent x and t respectively)

II. Description of subroutines ¥
1. ABC(L,K1,K2,K3,I1,I12,13,M1,M2,M3,J2,1C,ID,NNW1,NNW2,TT1,TT2,
TT3, TTT,NXT)

This subroutine is designed to interpolate for the proper-
ties at the base of the characteristics when only the gas phase 1is
present, When quadratic interpolation is required, a Lagrange inter-
polating polynomial of order two is used: namely

el (x=x,) (x-%,) - (xffl)(x-x3) .

(xl-xz)(xl-x3) 1 (xz-xl)(xz-x3) 2

(x-xl)(x-xz)

+ Yar
(x3-x1)(x3-x2) 3

where y(x) is the particular property to be calculated, and Y0 Y,
and yq are the values of that property at the mesh points.

The terms in the call list are

Kl = 1 calculate properties at points A,B and C
= 2 [ 1] 9 " " point A
= 3 ” 11 " " B
= 4 " ¢ " points A and C
- 5 " 1] " ” B and C
= 6 " " " point: c

* Note: For all subroutines, L = 1 ndicates that the point is located
behind the bullet; L = 2 indicates that point is located in

front of the bullet.
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K2 = 1 C properties are assigned to be the same as point (M1,IC)
K2 # 1 C properties are interpolated
K3 = 1 C properties are not calculated (used after first

iteration when K2 = 1)

11,12,13 = point numbers
M1,M2,M3 = line number of points I1,12,I3 respectively. (1 old time
line--~ 2 new time line )

J2 = 1 quadratic interpolation is used between points I1,I2 and I3
J2 = 2 linear interpolation is used between points Il and 12,

IC = (K2=1)IC is the point number of the mesh point correspond-
ing to point C.
ID = not used
NNW1 = " "
NNW2 =
TT1,TT2,1T3 = times associated with points I1,I2, and 13 respectively
if interpolation is with respect to time instead of
position.
TTT = not used
NXT = 1 interpolation along a constant time line using
position

2 interpolation using time
2, ABCD(L,K1,K2,K3,11,12,13,M1,M2,M3,J2,1IC,ID,NNW1,NNW2,
TT1,TT2,TT3, TTT,NXT)

This subroutine is quite similar to ABC except here the
properties of both phases are calculated. The terms in the call list
which are different from ABC are

K1 = 1 calculate properties at points A,B,C and D
1] n " 1"

= 2 A,C aund D

= 3 1] ” 11 1" B’C and D

= 4 " " " point A

= 5 " " " 11 B

= 6 11 " 1" " B

= 7 ” " " " D

- 8 ”" " " " C

= 9 11) " ”" " C

20 do no calculating just print A,B,C and D properties

K2 = 1,4,5 properties at point C correspond to properties at
pofnt (M1,IC)
2,3 properties at point D correspond to properties at
point (M1,ID)
1D = the point number of the mesh point corresponding to
point D if K2 = 2 or 3.

3. ApIsc(r,ID,K1,K2,K3,K4,K5)

This routine has two purposes: it handles discontinuities in
cross-sectional area, A(x) , and is used also, either in conjunction
with INRTBN or simply by itself, to handle the gas-particle interface,
when that interface is treated as a discontinuity in gas concentration
(0). Both of these purposes are accomplished with much the same
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computational procedure. There are two main differences, however.
The first is that, in the case of the gas-particle interface, no
particle properties are calculated in front of the discontinuity,
since no particles are present there; the second is that, in the
case of the gas-particle interface, the u-c characteristic may inter-
sect with the path of the bullet, and if i1t does, the properties at
the base of that characteristic must be obtained by interpolation
along the bullet path.

The terms in the call list are:

ID = point number of the point on the left hand side of the
area discontinuity

Kl = 0 normal Area Discontinuity
= 1 Gas-particle interface

K2 = not used

K3 - " "

K‘O . " "

KS - " "

4. ADT(C1,C2,C3,U1,U2,U3,X1,X2,X3,UP1,UP2,UP3,K1,K2,KK3)
This subroutine calculates the At associated with each point.

The derivation is as follows:

Figure Bl. Plot of characteristic grid used to calculate At.

Referring to Fig.(Bl), we first calculate At (DT1)
associated with the (utc) characteristic direction by writing

X%y (ugrey) + (uphey)

DT1 2
x4—x2 ) u4+u2
DT1 2

Rewritten, these equations are

1
X, = %X + DT1 - 2 (u4 + <, + uy + cl)
1
X, = X, + DT1 > (ua + u2)
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Subtracting these two equations, we obtain

1
0 (xl-xz) + DT1 5 (c4 + c + u; - uz)

If we now assume that c, - cz. we have

2(!2 - xl)
cptety -y
A similar argument leads to At(DT3) associated with the (u-c)

characteristic, namely:

DTl =

2(x2 - x3)

DT3 = = - =
U3 T Uy T €7 Cy

The terms in the call 1list are

c1,c2,c3, = CG at points 1,2 and 3 respectivelv
U1,u2,u3 = UG " o

X1,X2,X3 = x " "

UP1,UP2,UP3 = up

Kl = 1 interior point
2 1interface between gas and two-phase region
3 area discontinuity

K2 = 1 smallest value of At resulting from u+c and u-c
is chosen
At resulting from u+c 1is chosen

" u~-c¢ " "

w N

KK3 = not used.

5. AIN(IFILE,IA,KK]1,KK2,KK3,KK4)
This subroutine is used to read in data from a dump tape.
The terms in the call list are

IFILE = number of the file from which data is read.
IA = data is assigned to mesh point (IA, ).

KK1 = not used

2 - " "
3 - " "
4 = " "

6. AOUT(IFILE,IA,KK1,KK2,KK3,KK4)

This subroutine is the same as AIN except that it dumps data on
IFILE
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7. AR(XX,21,22) USER SPECIFIED

This function subroutine calculates the cross-sectional area
of the duct, A, given the x location.

8. ARX(XX,z1,22) USER SPECIFIED

This function subroutine calculates 3A/9x given x.

9. BNPTG(L,I1,I2,13,MAXIT,J1,J2,J3,J4)

This subroutine calculates the gas phase properties at boundary
points using one phase equations

The terms in the call list are:

I11,12,13 = base mesh points (point being calculated is Il
if J1 = 1 or I3 1if J1 = 2)

MAXIT = maximum number of iterations
Jl =1 1left boundary
2 right boundary
J2 = 1 specify velocity on the boundary
2 "  pressure
J3 = 1 normal boundary

= 2,3,4 special boundary points

1 J2=1 the bullet momentum equation is used

2 J2=1 the velocity (bullet) is zero.

3 boundary conditions are determined prior to
entering BNPTG(not in GBCOND)

Jé4

10, BNSH(L,K1,J4,MAXIT,JJ1,JJ2,JJ3)

This subroutine controls the calculation of a shock reflecting
from a boundary

The terms in the call list are

Kl = shock number

J4 = 1 bullet is moving
k 2 bullet 1s stationary
MAXIT = maximum number of iterations
JJ1 = not used
JJ2 = [1] "
JJ3 = " ”"”
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11. COMEQ1(L,M,K1,K2,K3,21,22,23;

Using the compatibility equation along the characteristic
direction dx/dt = up, Eq.(50),this routine solves for u, at point 4,
given values of the other material properties,

The terms in the call list are:

M=
Kl =1
2l = not used
zz - ” "
23 — " "

12. COMEQ2(L,M,K1,K2,K3,21,22,23)

This subroutine uses the particle energy equation, Eq.(52) written in
finite-difference form to solve for Ep at point 4, given values of the
other material properties,

Note: This routine is not used, because the particle energy
equation is uncoupled from the rest of the system.

13. COMEQ3(L,M,K1,K2,K3,N2,22,Z3)

This subprogram calculates 0, at point &4 given values of the
other material properties at point 4. The particle continuity equation
Eq.(51), written in finite-difference form, is used.

The terms in the call list are:

M= 1

Kl=1]

K2 = not used

K3 = J2 in GNPT

N2 = number of point being calculated (point 4)
Zl = pot used

22 - " ”

14. COMEQ4(L,M,K1,K2,K3,21,22,2Z3)

This routine uses the compatibility equation along the direction
dX/dt - u! qu(47)'

The terms in the gall list are:

-

M=1 two phase compatability equations is used
2’3 gas phase " i " "oon
Kl=1 equation (47) is solved for EG4

2 [1] (47 ) [1] (1] " 11}
and [aElaa]4 and [aE/Bu]A (see NEWTON)
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¢ K2 = not used
K3=1 PM4,PC4,GC4,GE4 are recalculated
2 wow v " are not recalculated
Zl = not used
zz = " "
z3 = " (1]

15. COMEQ5(L,M,K1,K2,K3,21,22,23)

This subroutine solves the compatibility equation along the
direction dx/dt = u + ¢, Eq.(48).

The terms in the call 1list are:

M=1,3 two phase compatability equation is used
}1 - 2 gas ” 1" 11 " 11
Kl =1 equation is solved for either SG4 or UG4
(see K2)
2 equation is put into the form g(o,u) = 0

and the derivatives 3g/3c and 3g/3u are
calculated (see NEWTON)

K2 =1 solve for SG4(M=1,3) or RG4(M=2)
2 solve for UG4
K3 = S.A. COMEQ4 ¢
2l = not used
722 = " "
z3 = " "

16. COMEQ6(L,M,K1,K2,K3,21,22,23)

This subroutine solves the compatibility equation along the
direction dx/dt = u - ¢, Eq.(49).

The terms in the'call list are:

i ey

M=1,2 two phase compatability equation is used
- 3 gas phase " of " " )
Kl =1 equation is solved for either SG4, RG4 or i
UG4 (see K2) ﬁ
2 equation is put in the form f(o,u) = 0 and

the derivatives 3f/90 and 3f/3u are calculated.

K2 =1 solve for SG4(M=1,2) or RG4(M=3)
2 solve for UG4 -
K3 = S.A. COMEQ4
Zl = not used
zz - " 1"
; 73 = " "

17. COMEQ?7 (L,M,K1,K2,21,22,23)

This routine calculates the regression distance (Z).

L is the only term in the call 1list that is used
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18. COMEQ8(L,M,K1,K2,K3,21,22,23)

This subroutine calculates field properties when UG4 and UP4

are zero and all base point properties are identical.
L is the only term in the call list that is used.

19. Csq(L,M,K1,K2,RH,E,C,P,PE,PR,T,XA,XB)

This subroutine calculates the sound speed of the gas

The terms in the call list are:

M=1 RH and E must be input
M= 2 P, RH, PE, PR must be input
Kl = not used
K2 = " "
RH = p

E=E

C=¢

P=p
PE = 3p/oE
PR = 3p/3p

T=T

XA = not used
XB = [1) "

20. DIFF(L,N,M,K2,K3,21,22,23)

This subroutine uses forward, backward and central difference
schemes to calculate the terms du,/9x and 30,/39x. Then the particle
continuity and momentum equations are used to calculate the terms

acp/at and dup/dt respectively.
The terms in the call list are:

N
M
K2

point number
line number
1 central difference is used
2 backward difference is used
3 forward . LA
4 x derivatives are calculated externally
derivatives are calculated.
K3i= M
. Zl = not used
2 = not used
3 = not used
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21. DIMEN(L,K1,K2,K3,K4,K5)

This subroutine nondimensionalizes all variables used in the
program using B(1,20), B(1,21), B(1,22) as nondimensionalizing factors.

The terms in the call are:

Kl = 1 nondimensionalize B properties

2 nondimensionalize points K4 to K5 on the K3

time line. 5

3 dimensionalize
K2 = not used A
K3 = time line number W
K4 = first point to be treated =4
KS = last 1 1] " (1] "

i

22. DROP(IDR)
This subroutine drops the IDR point from the 1 time line

ﬂ"ha

¥§

23. DRVX(L,N1,N2,N3,K1,K2,K3,Z1,22,23) o
This subroutine contains both 2 and 3 point forward and back- fé
T

#

ward and central difference schemes.

%
:

The terms in the call list are:
N1,N2,N3 = points to be used in differencing scheme

Kl = 1 calculates derivatives of ¢
" " [1] p

‘V”gi ;&\SIB:! A

2 up
K2 = 1 forward difference

2 central "
' 3 backward "
2
i K3 = line number
x Zl = not used
L zz = " n J

z3 - " "
e

24, DpTQ(L,ID1,ID2,1D3,DTT)

This subroutiue calculates At for each point on the time line.
The smallest value after being reduced by a factor (0.9) becomes the
At for the next time line calculation

The terms in the call list are:
ID1 = not used

IDZ - " "
ID3 - n "
DIT = At
84
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25. DZDT(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP, ES, ¥X, DT, TT,
K1,K2,K3,21,22,L) USER SPECIFIED

This function subroutine is used to calculate the regression
cate, DPz/Dt.

The only requirement in the call list is that the variables
used in the equation for the regression rate be available.
26. ERH(L,IQ,EI,PI,RHI,PMEES,PMRS,XA,TI)

This subroutine uses the equation of state to calculate p
or E. The Newton Raphson technique is used except for an Ideal gas.

The terms in the call list are:
IQ = 1 calculate p given E and p
11]

2 E 1] p " p
El = E
PI = p
RHI = p
PMEES = 3p/3E
PMRS = 3p/dp
XA = not used
TI = T

27. FQ(sG,Ssp,EG,EP,UG,UP,PG,PP,RG,RP,TG,TP,ES,XX,DT,TT
K1,K2,K3,21,22,L) USER SPECIFIED

This subroutine calculates the drag force, F, between the
particles and the gas.

The only requirement in the call list is that the variables
used in the equation for the drag force be available.
28. FRET(L,K1,K2,FRW,FTW,FEW,TW,RW,EW,XA,XB) USER SPECIFIED

This subroutine computes the derivatives of £(p,E,T) with
respect to p, E and T.

The terms in the call list are:

Kl = not used

K2 = 1 Virial equation of state.
! = 2 Van der Waal equation of state.

K3 = not used

FRW = of/ 3o

FIW = 3f/aT

FEW = 3f/3E

™= T
! RW= o

EW = E

XA = not used

XB = not used
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29. FWGQ(SG,SP,EG,EP, UG, UP,PG, PP,RG,RP, TG, TP, ES , XX, DT, TT
K1,K2,K3,21,22,L) USER SPECIFIED

This subroutine calculates the wall friction force acting on

the gas.ng.

The only requirement in the call list other than Kl is that
the variables used in the equation for the wall friction force,

be available.

Kl=1
-2

ng,

calculate Fy
calculate Fyg, 3Fyg/3u and 3Fyg/3p

30. FWPQ(sG,SP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP,ES, XX, DT, TT
K1,K2,K3,21,22,L) USER SPECIFIED

This subroutine is the same as FWGQ except that it calculates
the wall friction force acting on the particles,F@p.

31. GBCOND(L,M1,M2,K3,K4,XA,XB,PGG,UGG)
The subroutine is used to supply gas boundary conditions,
The terms in the call list are:

Ml =1
2
M2 =1
2
K} =
K4 = 2
XA =
XB =
PGG =
UGG =

32. Gc(sG,sp,UG,UP,EG,EP,RG,RP, CG,PG,PP, TG, TP,ES, F, FWG, FWP
W, WWG, WWP,QG, QP, QWG, QWP , AR, ARX, 21,22, L)

left boundary

right boundary

velocity is specified on the boundary
pressure " " " " "
point number of the boundary point
bullet has not moved and u = 0,

not used

not used

pressure

velocity

et

This subroutine calculates the right hand side of the gas

continuity equation, GC.

The only requirement in the call 1list other than Z1 is that the
variables used in the equation for GC be available. (the variables
F,FWG ==ecoceee= QWP are values generated by subroutines FQ,FWGQ-—-=—-—-
QWPQ respectively and AR and ARX are A and 3A/9x respectively)

21 =1
= 2

33. GE(SG,SP’UG,UP’EG,EP’RG’RP’CG'PG’PP.TG’TP.ESIF'WG.M
W, WWG, WP, QG, QP, QWG, QWP AR, ARX, 21, Z2, L)

This subroutine is the same as GC except that the right hand
side of the gas energy equation, GE, is calculated.

e =

calculate GC
L GC, 9GC/3u and 3GC/do
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34. GM(SG,SP, UG, UP, EG, EP,RG,RP, CG,PG,PP, TG, TP, ES, F, FWG, FWP,
W, WWG,WWP, QG, QP, QWG, QWP, AR, ARX, 21,22, L)

This subroutine is the same as GC except that the right hand
side of the gas momentum equation, GM, is calculated.

35. GNp1(L,I1,I2,13,MAXIT,J1,J2,J3,J4)

This subroutine calculates the properties of mesh points in
the two-phase region.

The terms in the call list are:

I1,12,I3 = point numbers
maximum number of iterations

MAXIT

Jl =

J2 =

J} =

J4 =

1

2

N =

base properties at points A,B,C and D
are calculated internally.

base properties at points A,C and D are
calculated internally. The B properties
are calculated externally.

base properties at points B,C and D are
calculated internally. The A properties
are calculated externally.

base properties at points A,B,C and D
are calculated externally.

normal (interior) point is calculated.
point 4 is located using up. The gas
compatability equation is used along dx/dt
= u+ c.

point 4 1s located using up. The gas
compatability equation is used along
dX/dt - y-C.

two phase left houndary is calculated.
two phase right boundary is calculated.
point in front of right traveling shock
is calculated.

point in front of left traveling shock
is calculated.

normal general point

initial calculation where interface and
bullet boundary are calculated simultaneously.
area discontinuity point.

not used.
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36. GNPTG(L,I11,K2,K3,MAXIT,J1,J2,J3,J4)
This subroutine calculates the properties of mesh points in
the gas only region.
The terms in the call list are:
: I11,12,1I3 = point numbers
MAXIT = maximum number of iterations
J1 = not used
J2 = 1 normal (interior) point is calculated.
= 2,3,4,5 not used _
= 6 point in front of right traveling shock is u
calculated.
= 7 point in front of left traveling shock is
calculated.
i J3 = not used
. J 4 = " "

37. GUESS(L,K1,12,J2,J3,M,JJ5,JJ6)
This subroutine supplies the first guess for the iterations in

t BNPTG,GNPT and GNPTG.
: The terms in the call list are:
Kl =1 first guess for BNPTG and GNPTG
= 2 - o " GNPT
. 12 = point number of properties used as a

first guess.
'3 (K1=2) first guess is the point (M,I12)
y4 10 (K1=2) first guess is solution of
linearized two phase equations

J2 = 1
2

- 6,7 (Kl=1) first guess is the point (M,I2)
, =1,2,3,4, (Kl=1) first guess is a solution of
5,8,9,10 linearized gas phase equations.

J3 = not used

M= line number of properties used as a

first guess.

JI5 = not used.
JJ6 = not used.

38. INDISC(L,ID)

This subroutine calculates the complicated singularity that occurs
when an area discontinuity exists at the initial bullet location.

The terms in the call list are:
ID = point number of the left point at the area discontinuity.

88




39. INIT(L,IP,XB,XC,XD)
This subroutine reads in and prints out all initial data.
The terms in the call list are:

IP = 0 read in and print out initial data

=1 only print out B( ) arcay.
2 only print out initial time line
XB = not used
XC P " "
m - " [1]

40. INRTBN(L,M,K1,K2,K3,11,12,13,J1,J2,J3,MAXIT)

This subroutine calculates the gas-particle interface and the
bullet boundary simultaneously. It 18 used until a mesh point is
inserted between the two. o

None of the terms in the call list are currently used.

41. INTPRN(L,TU,TL,TP,221,222,223,2Z4)

This subroutine interpolates for and prints out the properties
at a time line lying between two calculated time lines.

The terms in the call list are:

TU
TL
TP
zz1
222
2z3
ZzZ4

time of upper time line
" 1" lowel‘ " "
" " {nterpolated time line

not used
[1] "

42, INTSEC(x1,u1,C1,T1,X2,U2,C2,T2,X4,U4,C4,T4,N,XB,UB,CB,TB)

This subroutine calculates the x and t location of the point of
intersection B, of the line connecting points 1 and 2 and a
characteristic emanating from point 4.

The terms in the call list are:

X = x location of point _

U_ = gas velocity of point_

C_ = sound speed of point_

T_ = time of point_

N = 1 characteristic emanating from point 4 is dx/dt = u + ¢
2 1] " 1" ”" " e dxldt = y- ¢
3 ” 11 ” " "nn dxldt - u(u>0)
4 " " " . " "no”n dx/dt - u(u<o)
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43. LIMPNO(Y)

This subroutine drops mesh points, one-by-one, until the number
of points remaining is equal to MAXPT or MAXPTB. Each mesh point
dropped by LIMPNO lies in the region of smallest change in "Y"

(with respect to x) where Y is specified in the call statement and
can be any one of the flow variables. This helps to insure that a
comparatively fine mesh exists in regions of large change, and
that a somewhat larger mesh exists in regions of small change.

44. LINAB(L,K1,K2,K3,I1,12,J1,J2,XP,TP)

This subroutine uses linear interpolation to calculate
gas properties at points A or B.

The terms in the call list are:

Kl = calculate A properties
[1]

1
2 " B

K2 = 1 input coordinates of end points (I1,J1) and (I2,J2)
2

input end point properties through common
blocks LIN1,LIN2,LIN3

K3 = 1 interpolate using position, x.
2 ”"

" time, t.
11,12 = line numbers
J1,J2 = point numbers
XP = x location of point A or B
TP = time of point A or B

45. LOCABC(K1,I1,12,I3)

This subroutine calculates the x location of points
A,B,C and D.

The terms in the call list are:

K1 = 1 point C corresponds to point (1,12)
2 " D 1] 1] " "
not used
point number

not used

11
12
13

L

b

R
b
Ly

s
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46. NEWTON (L,M,K1,K2,K3,Ké4,21,22,23,24)

This subroutine uses Newton Raphson techniques to solve com-
patibility equations along characteiistics dx/dt = u, u + ¢

The terms in the call list are:

M = 1 two phase compatibility equations are used
"

=2 gas " equation is used alone
(dx/dt = u + ¢
3" " " o is used alone

(dx/dt = u - ¢
Kl = not used
K2 not used
K3 = 1 GC,GM,GE,PC and PM are held constant during iteration
2 GC,GM,GE,PC and PM vary during iteration
K4 = J2 in GNPT-used to determine the type of point being

calculated
Zl = not used
zz = " n
723 = " "
24 - " "

47. NTROPY(L,IQ,RG,EG,SS,JJ1,JJ2,3J3) USER SPECIFIED

This subroutine is user specified. It's function is to
calculate either the entropy, SS, density, RG, or specific internal
energy, EG of the gas phase given the other two.

The terms in the call list are:
IQ = 1 calculate entropy

- 2 " density
=3 " specific internal energy
§S =  entropy
JJ1 = not used
Jz - " ”
JJ3 - " "

48. PC(sG,spr,UG,UP,EG,EP,RG,RP,CG,PG,PP, TG, TP, ES, F, FWG, FWP,
W, WWG, WWP,QG,QP,QWG,QWP, AR, ARX, Z1, 22,L)

This subroutine calculates the right hand side of the
particle continuity equation, PC.

The only requirement on the terms in the call list is that
all variables used in PC be available.

91



49, FOV(NLINE,K1,P4,PA,PB,PDXA,PD,XB,PDTA,PDTB)

at point 4.
1

P4, PA and PB are the values at points 4, A and B of the variable to

be differentiated. PDXA PDXB PDTA and PDTB are the values of the

derivatives of the said variable at Points A and B.

This subroutine calculates o s O s U or u
PeX Pz PrX Pyt

The terms in the call list are:

NLINE = not used
Kl = 1 calculate x derivatives

- 2 " t 1}
50. PE(sG,SP,UG,UP,EG,EP,RG,RP,CG,PG,PP, TG, TP,ES,F,FWG, FWP,
W,WWG, WWP,QG, QP,QWG,QWP, AR, ARX, Z1,22,L)

This subroutine calculates the right hand side of the particle
enegry equation, PE.

The only requirement on the terms in the call list is that
all variables used in PE be available.

51. PLOTTO(IT)
This subroutineis used for plotting purposes only.
52. PM(SG,SsP,UG,UP,EG,EP,RG,RP,CG,PG,PP, TG, TP,ES,F,FWG,FWP,
W, WWG, WWP,QG, QP,QWG,QWP,AR, ARX, Z1,Z22,L)
This subroutine calculates the right hand side of the particle
momentum equation, PM,

The only requirement on the terms in the call list is that
all variables used in PM be available.

53. PPLOT(X,Y,NP,NPLOT)

This subroutine is used for plotting purposes only.

54, PRINTO(L,K1,K2,K3,K4,K5,KK6,KK7,KK8,KK9,KK10)

This subroutine controls the printout of calculated data.

The terms in the call list are:
number of first point to be printed

Kl =
Kz - " ”" ll.t [ 1] " " "
Kl = increment by which points are printed (usually 1)
K4 = number of line to be printed (either 1 or 2)
K5 = 1 print gas properties only
= 2 print two phase properties
KK6 = not used
KK7 - " "
KKS - " ”
KK9 - " (1]
KK10 = " "
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55. PTARNG (MSR, L)

The subroutine controls the adding and dropping of points
to maintain a specified time increment.

The terms in the call list are:
MSR = 1 always

56. PTQ(L,K1,K2,K3,RT,TT,PT,PTT,PTR,XA,XB) USFR SPECIFIED
This subroutine calculates p, 3p/3T and 3p/3p
The terms in the call list are:

K1l == not used
K2 = 1 Virial equation of state
2 Van der W 1 equation of state
3 Ideal gas e i 2
K3 = not used
Rt = ¢
TT = T
PT = p
PTIT = ap/aT
PIR = 3p/dp
XA = not used
Xb = not used

i
57. QET(L,K1,K2.RT,TT,ET,XA,XB,XC) USER SPECIFIED

This subroutine uses the equation f(p,E,T) = O to calculate
T given p and E or to calculate E given p and T

The terms in the call list are:

Kl = 1 calculate T
- 2 ”" D
K2 = 1 Virial equaticon of state 1s used
= 2 Van der Waal equation of state is used
RT = p
ITT=T
ET = E
XA = not used
XB - n "
xc - " "

58. QGQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP, ES, XX, DB, IT,
K1,K2,K3,Z,L)

This subroutine calculates the rate at which total energy is
released during burning of the propellant Q.

The only requirement on the terms in the call list is that
all variables used in Q be available.
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59. QPQ(sG,SP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP, ES, XX, DT, TT,
K1,K2,K3,2Z,22,L)

This subroutine calculates the rate at which the particles
lose energy during burning Qp.

The only requirement on the terms in the call list is that
all variables used in Qp be available.
60. QUAD(Y1,Y2,Y3,XP)

This subroutine uses quadratic interpolations to calculate
the Y property at location XP givea Y at points XX1,XX2 and XX3
(i.e., Y1,Y2,Y3 respectively)

61. QWGQ(sG,sP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP, ES, XX, DT, TT,
K1,K2,K3,CG, 23,CG,22,L)

This subroutine calculates the total energy lost by the gas
phase due to gas passing through the wall, Q, .

The only requirements on the terms in the call list is that
all variables used in Qw be available.
62. QWPQ(SG,Ssp,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP,ES, XX, DT, TT,
Kl’Kz’Ks’ ZI.ZZ.L)

The subroutine calculates the total energy lost by the particle
phase due to particles passing through the wall, pr.

The only requirements on the terms in the call list is that
all variables used in pr be available,

63. RHSGAS(L,K1,K2,RG,EG,PG,TG,CG,UG,XX,TT,DT,XA,XB,R1,
R2,R3)

This subroutine calculates the right hand side of the gas
continuity (R1), momentum (R2) and energy (R3), and their
derivatives with respect to p and u.

The only requirement on the terms in the call list other
than the variables used in R1l, R2 and R3

Kl = 1 calculate R1,R2, and R3
2 i " ", R3 and their derivatives.
64. SHKFRT(L,K1,K2,KK3,MAXIT,JJ1,JJ2,JJ3)

This subroutine controls the calculation of properties in
fron of and behind a shock wave.

The terms in the call list are:
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Kl = number of the shock

K2 = 0 normal shock front

= 1 SHKFRT called from BNSH with special treatment of

A and B properties
= 2 not used
3 SHKFRT called from BNSH for initial first ,uess
KK3 = not used
MAXIT = maximum number of iterations

JJl = not used
JJZ - (1] "
JJ3 - " ”

65. SHKIN(L,NR1L2,N2,M2,W,X,Y,Z)
This subroutine controls the initiation of a shock wave.
The terms in the call list are:

NR1L2

1 right traveling shock wave

2 left 11 " ”

N2 = the point number of the point behind the
inserted shock wave

M2 = the point number of the first mesh point
in front of the shock.
W= not used
x = ”" "
Y - 1] ”
z - " (1] t

66. SHKINT(L,K1,MAXIT,KK1,KK2,KK3,KK&)

This subroutine controls the calculation of a shock wave
interacting with a gas-particle interface.

The terms in the call list are:
K1l = number of the shock wave
MAXIT = maximum number of iterations
67. SHOKEQ(L,MS,MQ)

This subroutine solves the Rankin-ﬂugoniot shock relations
for the properties behind a shock wave given either u, p or the
shock velocity, U.

The terms in the call list are:
MS = 1 right traveling shock

2 left = "
MQ = 1 specify p benind the shock
2 ” u 1" " ”"
3 " the shock velocity, 1.
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68. SHTR(L,J,MM,I)

This subroutine controls the calculation of properties across
a shock (currently not in use)

The terms in the call list are:

J = shock number
MM = 1 right traveling shock

2 left " "
I = point number behind the shock

69. SMQ(L,ISM,RW,EW,PW,PRW,PEW,NA,NB, XA,AB, TW)

This subroutine calculates the pressure PW, temperature TW
and the derivatives of pressure with respect to density, RW and
energy, EW, given density and energy.

The terms in the call list are:

ISM = 1 calculate p
2 calculate p and 3p/dp
3 calculate p, 3p/3p 2al op/oE
4 calculate p and 3p/3E

70. sppT(L,KK1,K2,KK3,PG, TG,RG,EG,XX1,XX2,XX3) USER SPECIFIED

This subroutine calculates CV.Cp and vy
The terms in the call list are:

KKl = not used
K2 = 1 Virial equation of state is used

2 Van der Waal equation of state is used
3 Ideal gas equation of state us used

71. SUPINF(Y,YAV,MAXY,MINY,K)

This subroutine determines the maximum MAXY, minimum MINY,
and average, YAV values of a variable Y in the call list, and
calculates the average change in Y between adjacent mesh points on

a given time line.
The terms in the call list are:

K = 1 behind bullet
2 in front of bullet
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72. TBCOND(L,K1,K2,K3,K4, XA, XB, UG)

This subroutine specifies the boundary conditions for the gas
phase when both phases are present at the boundary.

The terms in the call list are:

Kl = 1 left boundary

2 right "
K2 = not used
K3 - [1] "
K4 = 1] "
XA = " "
XB = 111 (1]

73. WwQ(sG,sp,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP,ES, XX, DT, TT,
K1,K2,K3,2Z,22,L)

This subroutine calculates the rate at which gas mass is
created per unit volume of mixture during burning, w.

The only requirement on the terms in the call 1list is that
all variables used in w be available.

74. WWGQ(sG,SsP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP, ES, XX, DT, TT,
Kl,Kz,K3,ZI,Zz,L) !

This subroutine calculates the rate of decrease in gas mass
per unit volume of mixture due to losses through the duct wall, W,

The only requirement on the terms in the call list is that
all variables used in w, be available.

75. WWPQ(SG,SP,EG,EP,UG,UP,PG,PP,RG,RP, TG, TP,ES, XX,DT, TT,
K1,K2,K3,21,2Z2,L)

This subroutine calculates the rate of decrease in particle
mass per unit volume of mixture due to losses through the duct
wall. wwp‘

The only requirement on the terms in the call 1list is that
all variables used in wwp be available.
76. XINT(A,B,C,D,E)

This subroutine performs linear interpolation using the

formula
XINT = A + (B-A)E/D.
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77. VSWICH(L,K1,K2,K3,K4,KS5,K6,KK7,KK8,K9,K10)

This subroutine controls the switching of properties v
from one location to another. .

The terms in the call list are:
first point to be switched

Kl =
K2 = last " " " "
K3 = 1 always
K4,K5 = properties will be switched from line K5 43
to line K&, -
KG =1 K7 and K8 = I (K1 < I < K2) :
= 2 K7 and K8 = KK7 and KK8
K7,K8 = point K8 will be switched to K7 location
KK7,KK8 = (see K6 = 2)
K9 = 1 always
K10 = 0 always

III. Description of the options available for a user which re-
quire subroutines to be altered

1, Change the equation of state

a. To change the equation of state the user must put the
equation of state in the following form:

Pp" P(O,T)
and he must develope relations of the form:

£(E,0,T) = O

and
g(S,p,T) = 0

b. Subroutines PTQ, QET, NTROPY and FRET must be changed
in accordance with the instructions listed in the
program,

2 Change the expression for the regression rate

The user must alter subroutine DZDTQ in accordance
with instructions in the program.
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Change the shape of the particles.

The user must change the expressions for the folume of the
particle VP as a function of regression distance zz and its
time derivative in subroutine QGQ and WGQ.

Change the drag force expression.

The user must alter subroutine FQ in accordance with
instructions listed in thc program.

Change the expression for heat transfer with the wall.

The user must alter subroutine QWGQ for the gas phase and
QWPQ for the particle phase in accordance with instructions
listed in the program.

Change the expression for mass transfer with the wall.

The user must alter subroutine WWGQ for the gas ohase and
WWPQ for ti:e particle phase in accordance with irnst. uctions
listed in the program.

Change the expressinn for the friction force at the wall,

The user must alter subroutine FWGQ for the gas phase and
FWPQ for the particle phase in accordance with instructions
listed in the program.

Change the expression for the area of the duct as a
function of x.

The user must alter subroutines AR and ARX in accordance
with the instructions listed in the program.

Change the expression for Cv'

The user must alter subroutine SPPT by changing the expression

for CV.
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IV Instructions for running the computer code TWOFLO (additional
information can be found in the sample output, Sec.(6))

1. Before proceeding to discuss the input cards necessary to run
TWOFLO, let us first explain the restart option available to the
user. This program i{s designed to allow the user to divide a long
run up into several shorter ones, or to extend a run that has been
terminated due to process time limits. The important point to

be noted is that the data is dumped out by subroutine AOUT and
read back into the program in identical format in subroutine AIN.
If one wishes to change to a form of output other than a dump file,
(ie, punch cards, etc.) his only concern need be that all data
currently being transferred out of the program in the present form
be transfered out in the new form. This data must then be read

back into the program in entirety.

The procedure for utilizing the restart capability when
running TWOFLO is as follows:

a. Define three disk or tape files.
b. Set KDUMPN = | (data is read in from card deck) for initial

run and KDUMPN = 2 (data is read in from a file) for subsequent

restarts.
c. Set KDUMPT = 2 (data will be dumped on file for all time

lines evenly divisible by NOUTF).
d. Set the file codes IFILEI, IFILEl, IFILE2 and IFILE3.

The data will be read into the program from IFILEI and immediately
dumped on IFILE3 for storage. Subsequent time lines are dumped
on both IFILE2 and IFILE3 in accordance with NOUTF,

2. The following is a detailed description of the data cards
needed to initiate a calculation using TWOFLO.
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VARIABLE | CARD | COLUMN FORMAT DESCRIPTION
NAME No. No.

KPLOT 1 1-4 14 = 0 (no plots will be made)

= 1 (plots of prescribed
variables vs. position
will be made.

NPLOTS 5-8 14 no. of variables to be

plotted. It is possible

to plot up to six variables

vs. position.

NPLOTP 9-12 14 Every time line divisible

by NPLOTP will be plotted.

If KPLOT = 0 omit cards no. 2,3 and 4

IPLOT6 | 2 1-4 14 = 0 (No plotting) a
= ] (plots will be made)
IVARPL(I){ 3 1-4 1014 Code indicating which var-
I=1,NPLOTS 5-8 iables are to be plotted.
9-12 (See subroutine INIT for
etc. variable codes)
MULT(T) 4 1-4 1014 Nos. of plots of a partic-
I=1,NPOTS ular variable per grarh
5-8
9-12
etc,
NOADDB 5 1-4 I4 = 0 Program will automatically

add points behind the
bullet if required.

= 1 No pts. will be added be-
hind the b'1llet |

NNADDA 5-8 14 = () Program will automatically
add points in front of the
bullet if required.

E = ] No pts. will be added in
front of the bullet.

e ARSI i il

r NOADDI 9-12 14 DTMAX before interface is
NOADDI times as large as !
normal
MAXPT 6 1-4 14 Maximum no. of pts. allowed
behind the bullet
MAXPTB 5-8 14 Maximum no. of pts. allowed

in front of bullet.
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VARIABLE
NAME

CARD
No.

COLUMN
No.

FORMAT

DESCRIPTION

PTES

1-15

E15.8

Limiting value for volume
fraction of particles, e. If
€ at any point is less than
PTES particle effects are
ignored.

NTCAL

I4

No. of special times lines
at which the properties will
be interpolated for and
printed out., (up to five
special times allowable).

If NTCAL = 0 emit card

No. 9

TCAL(I)
I=1,NTCAL

1-75

5E15.8

The special times at which
the properties will be
printed out.

KDUMPN

KDUMPT

IFILEl
IFILE2

IFILE3

IFILEL

10

I1 -]

I1
I1

11

Il

e

(If KDUMPN = 2 data 1is to be
read in from existing disk
or tape file. See next
section for explanation of
input)

if calculations are not to
be dumped on a file

if calculations are to be
dumped on existing disk or
tape file.

If KDUMPT = 1, the values
of IFILE1l and IFILE2 are
meaningless (set equal to
zero)

If KDUMPT = 2 calculated
time lines are dumped on
disk or tape files nos.
IFILE2 and IFILE2.

If KDUMPN = 1 value of
IFILE3 1is meaningless (set
equal to zero).

If KDUMPN = 2 the calcula-
tions read in from IFILEl
are dumped on IFILE3 as an
auxiliary file

If KDUMPN = 2 Initial time
line is read in from IFILEI.
If KDUMPN = 1 value of IFILE]

is meaningless (set equal to
zero)

Tl S NI s 7=
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NOUTF

NOUTP

11

I1

I1

Any time line number into
which NOUTF divides evenly
will be dumped on IFILEl and
IFILE2.

Any time line into which
NOUTP divides evenly will be
printed out.

IDRAG

12

I1

- 1

The drag force between parti-
cle and gas phases 1is set
equal to zero.

Drag force is calculated.

B-CONSTANTS

13-42

1-60

4E15.8

On the next thirty(30) cards
the B-CONSTANTS are read in,
four(4) values per card (a
total of 120 CONSTANTS)

Card No. eleven(ll) would
contain B(1,1), B(1,2),
B(1,3), and B(l1,4) card
twelve B(1,5), B(1,6), B(1,7)
B(1,8) card No. 26 B(2,1),
B(2,2) B(2,3), B(2,4) etc.
(a description of the b
CONSTANTS appears at the end
of this section).

PERPGD
PERUGD
PERRGD

1-15
16-30
31-45

E15.8
E15.8
E15.8

. 50000000E~02
. 50000000E-02
. 50000000E-02

PERPGA
PERUGA
PERRGA

44

1-15
16-30
31-45

E15.8
E15.8
E15.8

.10000000E-02
. 10000000E-02
. 10000000E=02_

TIME

INTIME

{NDELT

TMAX

45

1-15

16-19

20-23

24-38

E15.8

14

14

E15.8
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The time of the initial time
line

Time line number of the
initial time line

No. of time lines to be
calculated

Time of last time line cal-
culated will be less than
TMAX (This parameter over-
rides NDELT)

¥
-
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s | A, X

DTMIN 46 1-15 E15.8 The minimum value for DELTA t :
(time) %

IDTMAX 16-30 E15.8 The maximum value for DELTA t

DTFIX 31-45 E15.8 1f calculated value of DT is

greater than DTFIX, DT will
be set equal to DIFIX without

adding points
1T 47 1-4 14 Maximum number of iterations
PXTOL 48 1-15 E15.8 If pressure gradient between

two successive points on time .
line is greater than PXTOL
and ISMAX > 0, a shock i=

inserted ;

; NDISC 49 1-4 14 P O number of area discontinui-
ties (not including gas-
particle interface) in the

i

problem ﬁ

If NDISC = 0 omit card No. 50
TDISC(KA) 50 1-4 1014 The point numbers of the §
area discontinuities 8
/|
|
TFRE (1) 51 1-4 14 Point number of breech 3
TFRE(2) 5-8 14 Point number of left surface :
of bullet |
INT(1) 9-12 14 Point number of interface f
f between gas and two-phase g
region 1
IFRE(3) 13-16 14 Point number of right surface J

of bullet
FRE(4) 17-20 14 Point number of muzzle
LSG 52 1-15 E15.8 The following twelve variableq

are the tolerances used in th
program's iterating procedure

e
TR R eR— ik

| TOLEG 16-30 | E15.8 e.g., TOLSG is the tolerance
TOL UG 31-45 E15.8 for SG(gas concentration) ee
TOLPG 46-60 E15.8 output for further information
TOLRG 61-75 E15.8
TOLSP 53 1-15 E15.8
TOLEP 16-30 E15.8
TOLUP 31-45 E15.8
TOLPP 46-60 E15.8
TOLEP 61-75 E15.8
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TOLES 54 1-15 E15.8
TOXX 16-30 E15.8
MFOS (1) 55 1-2 12 = 1 A virial equation of state
1s used in region behind the
bullet
= 2 Van der Waals equation of
state used in region behind
the bullet
= 3 Noble-Abel equation of state
is used in region behind the
bullet
MEOS (2) 3-4 12 = 1,2 or 3 same as MEOS(1l)
except region is in front of
the bullet.
ISMAX 56 1-4 14 = number of shocks initially
inserted (<2)
If ISMAX = 0 omit cards No. 57 and 58.
IS(1) 57 1-4 14 point number where shock
number 1 is to be inserted.
ISRIL2(1) 5-8 14 = ] right traveling shock is
inserted
= 2 left traveling shock is
inserted
F§§H(l) 9-23 E15.8 pressure behind the shock
If ISMAX = 1 omit card No. 58
1S5(2) 8 1-4 14 point number where shock
number 2 is to be inserted
(must be in front of bullet)
ISR1L2(2) 5-8 14 = ] right traveling shock is
: inserted.
= 2 left traveling shock is
inserted
PGSH(2) 9-23 E15.8 pressure behind the shock
LCODE 59 1-4 14 = ] Properties of all pts. behind

bullet are initially the
same. There will be IFRE(2)
-1 such pts., each separated
by a DELTA X of DX (calcu-
lated in subroutine INIT)
only one set of properties
behind bullet should be read
in




LCODEB

= 0 Properties of all pts. be-
hind bullet must be read in

5-8 I4 |= 1 Properties of all pts. in
front of the bullet are
initially the same. There
will be IFRE(4)-IFRE(3)-1
such pts., each being
separated by a DELTA X of
(calculated in INIT) only
one set of properties in
front of bullet should be
read in.

= 0 Properties of all pts. in
front of bullet must be
read in.

If LCODE = 1 one set of cards 60-62 should be read in

= 2 IFRE(2) sets of cards 60-62 should be read in

IK 60 1-4 14 =1
1J 5-8 I4 Point number of properties
on initial time line
XX(1,1I) 9-23 E15.8 Distance from IFRE(1l) on
initial time line.
UG(1,1I) 24-38 E15.8 Gas velocity
RG(1,I) 39-53 Gas density
PG(1,I) 54-68 E15.8 Gas pressure
If 1J > INT(l) do not read cards 61 and 62
UP(1,1) 61 1-15 E15.8 Particle velocity
EP(1,I) 16-30 E15.8 |= 0.0
RP(1,1I) 31-45 E15.8 Particle density
ES(1,1) 46-60 Volume fraction of particles
2z(1,1) 62 1-15 }7 E15.3 Regression distance
If LCODEB = 1 and IFRE(4) ¥ IFRE(2) read card 63
= 2ad " " " ow 0w TR " IFRE(4)-
IFRE(2) time
Same as
card 60 63
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NODIM l 64 1-4 14 = ] Causes nondimensionalization
= 0 No nondimensionalization
3. The following data cards are used to restart TWOFLO
VARIABLEICARD COLUMN FORMAT DESCRIPTION
NAME | No. No.

Cards
Card
Cards

Cards

1-9
10
11-12
13-15

are the same as the initial data
is the same as the initial data except KDUMPN=2
are the seme as the initial data

are the same as card 52-54 in the initial data

The following data cards are used to restart the program.

THAX

16

1-15

E15.8

time of last time line cal-
culated will be less than
TMAX (this parameter over-
rides NDELT).

NDTNEW

DTNEW

NDTMIN

DTMINW

NDELT

NDTFIX

17

2-16

17

18-32

33-36

37-40

11

E15.8

I1 -

E15.8

I4

14 p1
2 Value of DTFIX is set equal

107

Value of DELTA T remains the
same (no change for restart)

Value of DELTA T 1is set
equal to DTNEW

If NDTNEW = 1, value of DTNEW
is meaningless (set equal to
zero)

If NDINEW = 2, DELTA T is
set equal to DINEW

Value of DTMIN (see previous
section for explanation)
remains same

DTMIN is set equal to DTMINW

I1f NDTMIN = 1, value of
DTMINW 1is meaningless (set
equal to zero)

If NDTMIN = 2, DTMIN 1is set
equal to DIMINW

The number of time lines to
be calculated on this run.

Value of DTFIX remains same.

to DTFIXW




DTFIXW 41-55 E15.8 If NDTFIX = 1, value of
DTFIXW is meaningless (set
equal to zero)

If NDTFIX = 2, DTFIX is set
equal to DTFIXW.

NDTMAX 18 1 I1 P 1, Value of DTMAX remains the

same.
+ 2 Value of DTMAX is changed
to DTMAXW

DTMAXW 2-16 E15.8 If NDTMAX = 1, value of

DTMAXW i8 meaningless (set
equal to zero)

If NDTMAX = 2, DTMAX 1s set
equal to DTMAXW

NINT 19 1 I1 p 1, Value of INT(1l) remains the
same

= 2, Value of INT(2) is set equal
to INTW

INTW 2-4 I3 If NINT = 1, Value of INTW
is meaningless (set equal to
zero)

If NINT = 2, Value of INT(1)
is set equal to INTW

NPXTOL 20 1-4 14 P 1, Value of PXTOL remains the
same

= 2, Value of PXTOL is set equal
to PXTOLW (If ¢ is less
than PXTOL particle proper-
ties are ignored)

PXTOLW 5-19 E15.8 If NPXTOL = 1 value of
PXTOLW is meaningless (set
equal to zero)

If NPXTOL = 2, PXTOL is set
equal to PXTOLW.
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4. Description of the B(2,60) array input constants.

The "B'" constants which specify material properties will be
underlined. Such properties designated by the | location in the
array (ie. B(l, )) are for the material behind the bullet; while
those designated by the 2 location are for the material in front
of the bullet. Thus it is only necessary to explain the B(1l, )
portion of the array. Any constants that are not explained below
are currently not defined in the code and can be set equal to

zero.,

B(l,1 * 04 Reference density for Equation of State.

B(1,2) = TO' Reference temperature for Equation of State.

B(1,3) = EO’ Reference energy for the Equation of State.

B(1,4) = Py Reference pressure for Equation of State.

B(1,5) = Geometrical parameter used in subroutines QGQ
and WGQ to describe the particle shape.

B(1,6) = Geometrical parameter used in subroutines QGQ
and WGQ to describe the particle shape.

B(1,8) = ph, Hold back pressure

B(1,11) = R, Universal gas constant

B(1,12) = M , Mass of gas per mole

B(1,13) = Constant in Van der Waal Equation of State

B(1,14) = Constant 1in Van der Waal Equation of State

B(1,17) = T , Wall temperature

B(1,20) = o:, Nondimensionalizing density

B(1,21) = Xy Nondimensionalizing dis.ance

B(1,22) = Py Nondimensionalizing pressure

Initial x location of the bullet
L., Bullet length
B(1,25) = L__, Barrel length (measured from the beginning of the
barrel diameter)

o=
~~
—
-
N
&~
S
nowan

B(1,26) = D , Diameter of the chamber
B(1,27) = xc. x location where chamber diameter ends
B(1,28) = D;, Barrel diameter
B(i,29) = Xps X location of the beginning of the barrel diameter

| B(1,30) = Mg Reference dynamic viscosity used to calculate u
B(1,31) = Reference temperature used to calculate u
B(1,32) = Reference pressure used to calculate u
B(1,33) = Constant used to calculate u

. B(1,34) = Constant used to calculate yu

B(1,35) = K , Particle velocity ratio across area discontinuity
B(1,36) = ™ Reference temperature used in entropy equation
B(1,37) = Al’ Constant in equation for C
B(1,38) = QZ’ Constant in equation for C
B(1,40) = E”, Specific internal energy of combustion products
B(1,41) = K_, Heat released per unit volume of propellant burnt
B(1,42) = aQ, Constant in regression formula
B(1,43) = B8 , Constant in regression formula
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B(1,48) = F_,
B(1,49) = AB'
B(1,50) = M
B(1,51) = p
B(1,52) = tSD
B(1,53) = ¢

5. Description of user specified functions and variables currently in TWOFLO.

Bore resistance force
Cross~sectional area of the bullet

,» Bullet mass
» Muzzle pressure

The time that it takes for

after the shock 1leaves the

The time that it takes for

after the bullet leaves the

a. Drag Force (spherical particle)

bEBIT,
bBES1

to reach Py

o reach pM

3
F 3 CD ¢ +p ¢ |u-up| . (u-up)/B(l,S)

where

S 26, 4on(=1/3)
CD RE + 4+RE

RE = 2'p'B(1,5)-|u-up|/u

u = B(1,30) + [T-B(1,31)]-B(1,33) + [p-B(1,32)]°B(1,34)

b. Constant volume specific heat Cv

c,- B(L,37) + B(L,38)-T

c. Equation of State (Ideal gas)

p = B(L,11)*p°T/B(L,12) (L=1,

d. Volume of a particle (pancake)

v - n [B(1,5)-2] 2+ (B(1,6)+4- [B(1,5)-2] /3}

e. Various

¢

by -
€ Sm €< €=

©
€

parameters in Eq. (3)
Fu /o
uP

u

© Y ™M O
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6. Sample initial data

The sample input data presenced rere correspondes to computer
runs A,B and C presented in the Results and Conclusions section of
the main report.

CARD 1 KPLOT = 0
NPLOTS = 0

NPLOTP = 0
*

CARD 2 Not used (omit this card)
CARD 3 Not used (omit this card)
CARD 4 Not used (omit this card)
CARD 5 NOADDB = (
NOADDA = ]
NOADDI = 3
CARD 6 MAXPT = 30
MAXPTB = Not used (an arbitrary value of O is read in)
CARD 7 PTE3 = (). 10000000E-02
CARD 8 NTCAL = 4

0.20000000E-03 s
0.40000000E-03 s
0.60000000E-03 s
0.80000000E-03 s

CARD 9 TCAL(1)
TCAL(2)
TCAL(3)
TCAL(4)

CARD 10 KDUMPN
KDUMPT
IFILE]
IFILE2
IFILE2
IFILEI

b— et N bt N b

1
1

CARD 11 NOUTF
NOUTP

CARD 12 IDRAG = 1]

CARD 13 B(1,1) 0.12800000E+01 kg/m’

B(1,2) = Not used (an arbitrary value of 0.0 K is reazd in)
B(1,3) = Not used (an arbitrary value of 0.0 J/kg is read in)
B(1,4) = Not used (an arbitrary value of 0.0 Pa is read in)

CARD 14 B(1,5) 0.27305000E-03 m (Runs A & C) 0.13650000E-03 m (Run C)

B(1,6) = 0.38100000E~03 m (Runs A & C) 0.19050000£-03 m (Run C)
B(1,7) = Not defined **
B(1,8) = 0.20700000E+08 Pa

* The term Not used indicates that the variable is defined but not used
for this specific run.
*The term Not defined indicates that the term is never used in the program.
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CARD 15 B(1,9) Not defined = 0.00000000E+00

B(1,10) = Not defined = 0.00000000E+00
¢ B(1,11) = 0.83140000E+01 J/(K*mol)
B(1,12) = 0.25547800E-01 kg/mol

Not used (an arbitrary value of 0.0 N-m®/kg2 is

read in)

B(1,14) = Not used (an arbitrary value of 0.0 m3/kg is read in)
B(1,15) Not defined = 0.00000000E+00

B(1,16) Not defined = (.00000000E+00

CARD 16 B(1,13)

CARD 17 B(1,17) 0.00000000E+00 K

B(1,18) = Not defined = 0.00000000E+00
B(1,19) = Not defined = 0.00000000E+00
B(1,20) = 0.15000000E+03 kg/m3
CARD 18 B(1,21) = 0,40000000E-01 m
B(1,22) = 0.20000000E+09 Pa
’ B(1,23) = 0.33100000E-~01 m
B(1,24) = 0.15000000E~01 m
CARD 19 B(1,25) = 0.47000000E+00 m
B(1,26) = 0.90750000E-02 m
B(1,27) = 0.26850000E-01 m
B(1,28) = 0.56500000E-02 m
CARD 20 B(1,29) = 0.31000000E-01 m
B(1,30) = 0.18192000E-04 N:s/m2
B(1,31) = 0.29300000E+03 K
B(1,32) = 0.101300C0E+06 Pa

CARD 21 B(1,33) 0.53600000E-07 N-s/(m2-K)

B(1,34) = 0.12080000E-12 s
B(1,35) = Not defined = 0.00000000E+00
B(1,36) = 0.29800000E+03 K

CARD 22 B(1,37)
1 B(1,38)
B(1,39)
B(1,40)

0.13559000E+04 J/(kg-K%
0.00000000E+00 J/ (kg:K<)

Not defined = 0.00000000E+00
0.00000000E+00 J/kg

new N
L

CARD 23 B(l,41) 0.63000000E+10 J/m3

B(1,42) = 0.12000000E-07 m/(Paf.s) (B=B(1,43))
B(1,43) = 0,84550000E+00
B(1,44) = Not defined = 0.00000000E+00

2
;4.

CARD 24 B(1,45) Not defined = 0.00000000E+00

B(1,46) = Not defined = 0.00000000E+00
B(1,47) = Not defined = 0.00000000E+00
B(1,48) = 0.16700000E+03 N
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CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

26

27

28

29

30

31

32

33

34

35

36

37

B(1,49)
B(1,50)
B(1,51)
B(1,52)

0.101

B(1,53)
B(1,54)
B(1,55)
B(1,56)

B(1,57) - B(1,60)

2

0.24279500E-04 m
0.36290000E-02 kg

32500E+06 Pa

0.20000000E-04 s

0.50000000E-04 s

Not defined = (0.00000000E+00
Not defined = 0,00000000E+00
Not defined = 0Q.,00000000E+00

= Not defined = 0.00000000FE+00

B(2,1) = Not used (an arbitrary value
B(2,2) = Not used (an arbirtary value
B(2,3) = Not used (an arbitrary value
B(2,4) = Not used (an arbitrary value

B(205) - B(zis)

B(2,9)

B(2,10)
B(2,11)
B(2,12)

B(2,13)

0 kg/m3 is read in)
0 K 18 read in)
0 J/kg 1is read in)
0 Pa isread in)

= Not defined = 0.00000000E+00

Not defined = 0.00000000E+00
Not defined = (.00000000E+00
Not used (an arbitrary value
Not used (an arbitrary value

Not used (an arbirtary value

read in)

B(2,14)
B(2,15)

B(2,17)

B(2,20)

B(2,21)

B(2,24)

B(2,25) - B(2,28)

B(2,29)

B(2,32)

B(2,33)
B(2,34)
B(2,35)
B(2,36)

B(2,37)
B(2,38)
B(2,39)
B(2,40)

Not used (an arbitrary value
Not defined = 0.00000000E+00
B(2,16) = Not defined = 0.00000000E+00

of 0.0 J/(K-mol) is read in)
of 0.0 kg/mol 1is read in)

of 0.0 N-mb/kg2 is

of 0.0 m3/kg isread in)

= Not defined = 0.00000000E+00

= Not defined = 0.00000000E+00

= Not defined = 0.00000000E+00

= Not defined = 0.00000000E+00

Not defined = 0.00000000E+00
Not defined = 0.00000000E+00
Not defined = 0.00000000E+00
Not used (an arbirtary value of 0.0 K is read in)
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Not used (an arbitrary value of 0
Not used (an arbitrary value of 0O
Not defined = 0.00000000E+00
Not defined = 0.00000000E+00

01/
0J/

(kg:K) is read in)
(kg-K2) is read in)
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4528

B(2,44) Not defined = 0.00000000E+00 N

CARD 38 B(2,41)

- :
CARD 39 B(2,45) - B(2,48) = Not defined = 0.00000000E+00 '%
CARD 40 B(2,49) - B(2,52) = Not defined = 0.00000000F+00 :
CARD 41 B(2,53) - B(2,56) = Not defined = 0.00000000E+00
CARD 42 B(2,57) - B(2,60) = Not defined = 0.00000000E+00

CARD 43 PERPGD 0.50000000E-02
PERUGD 0.50000000E-02
PERRGD = 0.50000000E-02

CARD 44 PERPGA = 0.10000000E-01 o
PERUGA 0.10000000E-01
PERRGA = 0.10000000E-01

CARD 45 TIME 0.00000000E+00 s

NTIME = 0 &
NDELT = 40 g
TMAX = 0.12000000E-02 s £

CARD 46 DTMIN 0.45000000E-05 s
DTMAX = Not used (a value less than 2.2 x DTMIN should
be read in) = 0.00000000E+00 s
DTFIX = Not used (a value much larger than DTMIN should
be read in) = 0.10000000E+10 s

*

_.:‘I__l-__,:.'_ﬁ:_%?ﬂﬁ,:

CARD 47 MAXIT = 15

CARD 48 PXTOL 0.50000000E+01 Pa/m

CARD 49 NDISC 0 (Program is currently not operational for

NDISC greater than 0)

CARD 50 Not used (omit this card)

CARD 51 1IFRE(l) = 1
IFRE(2) = 6
INT(1) = 6
IFRE(3) = 6
IFRE(4) = 6

CARD 52 TOLSG = 0.10000000E-02
TOLEG = 0.10000000E-02
TOLUG = 0.10000000E-02
TOLPG = 0.10000000E-02
TOLRG = 0.10000000E-02
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CARD 53 TOLSP = 0.10000000E-02

TOLEP = Not used (an arbitrary value of 0.10000000E-02
is read 1in)

TOLUP = 0.10000000E-02

TOLPP = Not used (an arbitrary value of 0.10000000E-02
is read in)

TOLRP = Not used (an arbitrary valuc of 0.10000000E-02

is read 1in)

CARD 54 TOLES
TOLXX

0. 10000000E-02
0.10000000E-02

CARD 55 MEOS(1) = 3
ME0S(2) = Not used (an arbitrary value of 3 is read in)
CARD 56 ISMAX = 0

CARD 57 Not used (omit this card)

CARD 58 Not used (omit this card)

CARD 59 LCODE 1
LCODEB = Not used (an arbitrary value of | is read in)

CARD 60 1K - 1
1J = 1
XX(1,1) = 0.00000000E+00 m
UG(1,1) = 0.00000000E+00 m/s
RG(1,1) = 0.10755000E+00 kg/m3 (Runs A & B)
= 0.14637200E+02 kg/m3 (Run C)
PG(1,1) = 0.10132500E+06 Pa (Runs A & B)

0.13790000E+08 Pa (Run C)

CARD 61 UP(1,1) 0.00000000E+00 m/s
EP(1,1) = Not used (an arbitrary value of 0.00000000E+00 J/kg
is read in)
0.16050000E+04 kg/m3
0.575C0000E+0C

RP(1,1)
ES(1,1)

CARD 62 Zz(1,1) 0.00000000E+00 m

CARD 63 Not used (omit this card)

CARD 64 NODIM = 0
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TOLPP

TOLRP
CARD 15 TOLES

TOLXX
CARD 16 TMAX

CARD 17 NDTNEW
DTNEW

NDTMIN
DTMINW

NDELT
NDTFIX
DTFIXW

CARD 18 NDTMAX
DTMAXW

CARD 19 NINT
INTW

CARD 20 NPXTOL
PXTOLW

Not used (an
is read 1in)
Not used (an
is reesd in)

arbitrary

arbitrary

0.10000000E-02

= (), 10000000E-02

0.12000000E-02 s

i
Not used (an
is read in)
1
Not used (an
is read in)
5
1
Not used (an
is read 1in)

1
Not used (an
is read in)

1
Not used (an

1
Not used (an
is read in)

arbitrary

arbitrary

arbitrary

arbitrary

arbitrary

arbitrary
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0.10000000E-02

0.10000000E-02

0.00000000E+00

0.00000000E+00
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0.00000000E+00
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7.

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

Sample restart data

1

10

11

12

13

14

KPLOT
NPLOTS
NPLOTP

Not used
Not used
Not used

NOADDB
NOADDA
NOADDI

MAXPT
MAXPTB

PTES
NTCAL

TCAL(1)
TCAL(2)
TCAL (3)
TCAL (4)

KDUMPN
KDUMPT
IFILEL
IFILE2
IFILE3
IFILEX

NOUTF
NOUTP

IDRAC

TOLSG
TOLEG
TOLUG
TOLPG
TOLRG

TOLSP
TOLEP

TOLUP

0
0
0

(omit this card)

(omit this card)

(omit this card)

0
1
3

30
Not used (an arbitrary value of 0 is read in)

0.10000000E-02
4

0.20000000E-03 s
0.40000000E-03 s
0.60000000E-03 s
0.80000000E-03 s

2
2

1
1

1

0.10000000E-02
0.10000000E-02
0.10000000E-02
0.10000000E-02
0. 10000000E-02

0.10000000E-02
Not used (an arbitrary value of 0.10000000E-02

is read in)
0. 10000000E-02
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